honors combinatorics
play

Honors Combinatorics CMSC-27410 = Math-28410 CMSC-37200 Instructor: - PowerPoint PPT Presentation

Honors Combinatorics CMSC-27410 = Math-28410 CMSC-37200 Instructor: Laszlo Babai University of Chicago Week 6, Thursday, May 14, 2020 CMSC-27410=Math-28410 CMSC-3720 Honors Combinatorics 2-colorable hypergraphs If an r -uniform


  1. Honors Combinatorics CMSC-27410 = Math-28410 ∼ CMSC-37200 Instructor: Laszlo Babai University of Chicago Week 6, Thursday, May 14, 2020 CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  2. 2-colorable hypergraphs If an r -uniform hypergraph has ≤ 2 r − 10 Theorem (Erd˝ os) edges then it is 2-colorable. CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  3. 2-colorable hypergraphs If an r -uniform hypergraph has ≤ 2 r − 10 Theorem (Erd˝ os) edges then it is 2-colorable. Proof. Let the edges be E 1 , . . . , E m . Color the vertices red/blue at random. Let B i be the event that E i becomes monochromatic ( bad event ). P ( B i ) = 2 2 r ∴ P ( coloring illegal ) = P ( � m i = 1 B i ) ≤ � m i = 1 P ( B i ) = 2 m 1 2 r ≤ 512 Not only does a good coloring exist, but 99.8% of the colorings works. CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  4. 2-colorable hypergraphs QUESTION (Erd˝ os) What if we don’t limit the number of edges, only the degree of the vertices? CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  5. 2-colorable hypergraphs QUESTION (Erd˝ os) What if we don’t limit the number of edges, only the degree of the vertices? What is the largest degree bound that will guarantee 2-colorability? CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  6. 2-colorable hypergraphs QUESTION (Erd˝ os) What if we don’t limit the number of edges, only the degree of the vertices? What is the largest degree bound that will guarantee 2-colorability? Close to 2 r ? CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  7. 2-colorable hypergraphs QUESTION (Erd˝ os) What if we don’t limit the number of edges, only the degree of the vertices? What is the largest degree bound that will guarantee 2-colorability? Close to 2 r ? YES CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  8. 2-colorable hypergraphs Random coloring? Suppose degree ≤ 1 (edges are disjoint) — Probability of success? � m � 1 − 2 < e − 2 m / 2 r → 0 ∴ P ( coloring legal ) = 2 r as m → ∞ exponentially small. Random coloring will not work. CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  9. 2-colorable hypergraphs Random coloring? Suppose degree ≤ 1 (edges are disjoint) — Probability of success? � m � 1 − 2 < e − 2 m / 2 r → 0 ∴ P ( coloring legal ) = 2 r as m → ∞ exponentially small. Random coloring will not work. Lovász (1976): “Not so fast. Exponentially small but positive chance is still success.” CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  10. Lovász Local Lemma G = ( V , F ) graph (2-uniform hypergraph) each v ∈ V associated with bad event B v CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  11. Lovász Local Lemma G = ( V , F ) graph (2-uniform hypergraph) each v ∈ V associated with bad event B v Assumptions: 1. each B v independent of the set { B w | w not a neighbor of v } 2. ( ∀ v ∈ V )( deg ( v ) ≤ d ) 3. ( ∀ v ∈ V )( P ( B v ) ≤ 1 / ( 4 d )) CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  12. Lovász Local Lemma G = ( V , F ) graph (2-uniform hypergraph) each v ∈ V associated with bad event B v Assumptions: 1. each B v independent of the set { B w | w not a neighbor of v } 2. ( ∀ v ∈ V )( deg ( v ) ≤ d ) 3. ( ∀ v ∈ V )( P ( B v ) ≤ 1 / ( 4 d ))   Conclusion: �     P B v  > 0        v ∈ V We have positive chance to avoid all the bad events. CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  13. Independence from a set of events Let ǫ 1 , . . . , ǫ k ∈ { 1 , − 1 } . Events B 1 , . . . , B k define 2 k atoms B ǫ 1 1 ∩ · · · ∩ B ǫ k k where B 1 i = B i and B − 1 = B i . i CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  14. Independence from a set of events Let ǫ 1 , . . . , ǫ k ∈ { 1 , − 1 } . Events B 1 , . . . , B k define 2 k atoms B ǫ 1 1 ∩ · · · ∩ B ǫ k k where B 1 i = B i and B − 1 = B i . i DEF: Event A and the set { B 1 , . . . , B k } of events are independent if A is independent of each atom of the B i . CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  15. Independence from a set of events Let ǫ 1 , . . . , ǫ k ∈ { 1 , − 1 } . Events B 1 , . . . , B k define 2 k atoms B ǫ 1 1 ∩ · · · ∩ B ǫ k k where B 1 i = B i and B − 1 = B i . i DEF: Event A and the set { B 1 , . . . , B k } of events are independent if A is independent of each atom of the B i . DO: A and { B 1 , . . . , B k } are independent ⇐⇒ for every Boolean function f : { 0 , 1 } k → { 0 , 1 } , A is independent of f ( B 1 , . . . , B k ) . CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  16. Conditional probabilities DEF: If P ( B ) > 0 then P ( A | B ) := P ( A ∩ B ) P ( B ) CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  17. Conditional probabilities DEF: If P ( B ) > 0 then P ( A | B ) := P ( A ∩ B ) P ( B ) Lemma P ( A | C ∩ D ) = P ( A ∩ C | D ) P ( C | D ) CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  18. Conditional probabilities DEF: If P ( B ) > 0 then P ( A | B ) := P ( A ∩ B ) P ( B ) Lemma P ( A | C ∩ D ) = P ( A ∩ C | D ) P ( C | D ) Proof. P ( A | C ∩ D ) = P ( A ∩ C ∩ D ) = P ( A ∩ C | D ) P ( D ) P ( C ∩ D ) P ( C | D ) P ( D ) CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  19. Lovász Local Lemma G = ([ n ] , F ) graph; events B i ( i ∈ [ n ]) 1. each B i independent of the set { B j | j not a neighbor of i } 2. ( ∀ i ∈ [ n ])( deg ( i ) ≤ d ) � � P ( B i ) ≤ 1 3. ( ∀ i ∈ [ n ]) 4 d CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  20. Lovász Local Lemma G = ([ n ] , F ) graph; events B i ( i ∈ [ n ]) 1. each B i independent of the set { B j | j not a neighbor of i } 2. ( ∀ i ∈ [ n ])( deg ( i ) ≤ d ) � � P ( B i ) ≤ 1 3. ( ∀ i ∈ [ n ]) 4 d �� n � Then P i = 1 B i > 0 CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  21. Lovász Local Lemma G = ([ n ] , F ) graph; events B i ( i ∈ [ n ]) 1. each B i independent of the set { B j | j not a neighbor of i } 2. ( ∀ i ∈ [ n ])( deg ( i ) ≤ d ) � � P ( B i ) ≤ 1 3. ( ∀ i ∈ [ n ]) 4 d �� n � Then P i = 1 B i > 0 Proof by induction on n .   n � �  ≤ 1 �    �  Lemma P  B 1 B i   �   2 d � i = 2 CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  22. Lovász Local Lemma G = ([ n ] , F ) graph; events B i ( i ∈ [ n ]) 1. each B i independent of the set { B j | j not a neighbor of i } 2. ( ∀ i ∈ [ n ])( deg ( i ) ≤ d ) � � P ( B i ) ≤ 1 3. ( ∀ i ∈ [ n ]) 4 d �� n � Then P i = 1 B i > 0 Proof by induction on n .   n � �  ≤ 1 �    �  Lemma P  B 1 B i   �   2 d � i = 2 Condition has positive probability by inductive hypothesis CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  23. Lovász Local Lemma Theorem � � P ( B i ) ≤ 1 �� n � ( ∀ i ∈ [ n ]) = ⇒ P i = 1 B i > 0 4 d CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  24. Lovász Local Lemma Theorem � � P ( B i ) ≤ 1 �� n � ( ∀ i ∈ [ n ]) = ⇒ P i = 1 B i > 0 4 d Proof by induction on n .   � n �  ≤ 1 �    �  Lemma P  B 1 B i   �   2 d � i = 2 CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  25. Lovász Local Lemma Theorem � � P ( B i ) ≤ 1 �� n � ( ∀ i ∈ [ n ]) = ⇒ P i = 1 B i > 0 4 d Proof by induction on n .   � n �  ≤ 1 �    �  Lemma P  B 1 B i   �   2 d � i = 2 Lemma = ⇒ Theorem CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  26. Lovász Local Lemma Theorem � � P ( B i ) ≤ 1 �� n � ( ∀ i ∈ [ n ]) = ⇒ P i = 1 B i > 0 4 d Proof by induction on n .   � n �  ≤ 1 �    �  Lemma P  B 1 B i   �   2 d � i = 2 Lemma = ⇒ Theorem Proof: F := B 2 ∩ · · · ∩ B n . � � 1 − 1 P ( B 1 ∩· · ·∩ B n ) = P ( B 1 ∩ F ) = P ( B 1 | F ) P ( F ) ≥ P ( F ) > 0 2 d QED CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  27. Lovász Local Lemma   n �  ≤ 1 � �    �  Lemma P  B 1 B i   �   2 d � i = 2 CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  28. Lovász Local Lemma   n �  ≤ 1 � �    �  Lemma P  B 1 B i   �   2 d � i = 2 Proof. Induction on n . Neighbors of vertex 1: { 2 , . . . , k } C := B 2 ∩ · · · ∩ B k D := B k + 1 ∩ · · · ∩ B n   n �  = P ( B 1 | C ∩ D ) = P ( B 1 ∩ C | D ) ≤ 1 � � ?    �  P  B 1 B i   �   P ( C | D ) 2 d � i = 2 CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend