honors combinatorics
play

Honors Combinatorics CMSC-27410 = Math-28410 CMSC-37200 Instructor: - PowerPoint PPT Presentation

Honors Combinatorics CMSC-27410 = Math-28410 CMSC-37200 Instructor: Laszlo Babai University of Chicago Week 4, Tuesday, April 28, 2020 CMSC-27410=Math-28410 CMSC-3720 Honors Combinatorics Todays material Linear Program (LP)


  1. Honors Combinatorics CMSC-27410 = Math-28410 ∼ CMSC-37200 Instructor: Laszlo Babai University of Chicago Week 4, Tuesday, April 28, 2020 CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  2. Today’s material Linear Program (LP) Primal/Dual LP , Duality Theorem Integer Linear Program (ILP), integrality gap Hypergraph cover and matching Hypergraph fractional cover and fractional matching Lovász’s greedy vs. fractional cover theorem CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  3. System of linear equations k linear equations in n unknowns a 11 x 1 + a 12 x 2 + . . . + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + . . . + a 2 n x n = b 2 . . . . . . . . . a k 1 x 1 + a k 2 x 2 + . . . + a kn x n = b k CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  4. System of linear equations k linear equations in n unknowns a 11 x 1 + a 12 x 2 + . . . + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + . . . + a 2 n x n = b 2 . . . . . . . . . a k 1 x 1 + a k 2 x 2 + . . . + a kn x n = b k Ax = b CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  5. System of linear equations Ax = b  a 11 a 12 . . . a 1 n   x 1   b 1              a 21 a 22 . . . a 2 n x 2 b 2                   A = x = b =  . . .   .   .   . . .   .   .   . . .   .   .                          a k 1 a k 2 . . . a kn x n b k       CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  6. System of linear inequalities k linear inequatlities in n unknowns a 11 x 1 + a 12 x 2 + . . . + a 1 n x n ≤ b 1 a 21 x 1 + a 22 x 2 + . . . + a 2 n x n ≤ b 2 . . . . . . . . . a k 1 x 1 + a k 2 x 2 + . . . + a kn x n ≤ b k CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  7. System of linear inequalities k linear inequatlities in n unknowns a 11 x 1 + a 12 x 2 + . . . + a 1 n x n ≤ b 1 a 21 x 1 + a 22 x 2 + . . . + a 2 n x n ≤ b 2 . . . . . . . . . a k 1 x 1 + a k 2 x 2 + . . . + a kn x n ≤ b k Ax ≤ b CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  8. System of linear inequalities partially ordering the vectors: coordinatewise  u 1   v 1          u 2 v 2             ≤  .   .   .   .   .   .                  u k v k     if ( ∀ i )( u i ≤ v i ) Same for matrices: A ≤ B if ( ∀ i , j )( a ij ≤ b ij ) DO: A ≤ B ∧ C ≥ 0 = ⇒ AC ≤ BC CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  9. System of linear inequalities Ax ≤ b feasible system: solution exists CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  10. System of linear inequalities Ax ≤ b feasible system: solution exists Example of infeasible system: x 1 ≤ 2 x 1 ≥ 3 CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  11. System of linear inequalities Ax ≤ b feasible system: solution exists Example of infeasible system: x 1 ≤ 2 ≤ x 1 2 equivalently x 1 ≥ 3 − x 1 ≤ − 3 CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  12. Linear Program (LP) A ∈ R k × n , b ∈ R k , c ∈ R n Input: Ax ≤ b , x ≥ 0 Constraints: max ← c · x Objective: CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  13. Linear Program (LP) A ∈ R k × n , b ∈ R k , c ∈ R n Input: Ax ≤ b , x ≥ 0 Constraints: max ← c · x Objective: max ← { c · x | Ax ≤ b , x ≥ 0 } Goal: maximize objective function subject to constraints CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  14. Feasible LP max ← { c · x | Ax ≤ b , x ≥ 0 } x ∈ R n that feasible solution: satisfies the constraints: Ax ≤ b , x ≥ 0 feasible LP: ∃ feasible solution, i.e., ( ∃ x ∈ R n )( Ax ≤ b , x ≥ 0 ) CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  15. Linear Program (LP) A ∈ R k × n , b ∈ R k , c ∈ R k Input: Constraints: Ax ≤ b , x ≥ 0 Objective: max ← c · x CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  16. Linear Program (LP) A ∈ R k × n , b ∈ R k , c ∈ R k Input: Constraints: Ax ≤ b , x ≥ 0 Objective: max ← c · x max ← { c · x | Ax ≤ b , x ≥ 0 } CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  17. Linear Program (LP) A ∈ R k × n , b ∈ R k , c ∈ R k Input: Constraints: Ax ≤ b , x ≥ 0 Objective: max ← c · x max ← { c · x | Ax ≤ b , x ≥ 0 } feasible LP: constraints feasible ( ∃ x ∈ R n )( Ax ≤ b , x ≥ 0 ) CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  18. Primal/Dual Linear Program INPUT: A ∈ R k × n , b ∈ R k , c ∈ R n UNKNOWNS: primal variables x ∈ R n , dual variables y ∈ R k PRIMAL LP: max ← { c · x | Ax ≤ b , x ≥ 0 } CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  19. Primal/Dual Linear Program INPUT: A ∈ R k × n , b ∈ R k , c ∈ R n UNKNOWNS: primal variables x ∈ R n , dual variables y ∈ R k PRIMAL LP: max ← { c · x | Ax ≤ b , x ≥ 0 } DUAL LP: min ← { b · y | A T y ≥ c , y ≥ 0 } CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  20. Primal/Dual Linear Program A ∈ R k × n , b ∈ R k , c ∈ R n INPUT: PRIMAL: max ← { c · x | Ax ≤ b , x ≥ 0 } min ← { b · y | A T y ≥ c , y ≥ 0 } DUAL: Lemma. If x 0 is a feasible solution to the Primal and y 0 a feasible solution to the Dual then c · x 0 ≤ b · y 0 Gives upper bound for MAX lower bound for MIN CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  21. Primal/Dual Linear Program PRIMAL: max ← { c · x | Ax ≤ b , x ≥ 0 } min ← { b · y | A T y ≥ c , y ≥ 0 } DUAL: Lemma. If x 0 is a feasible solution to the Primal and y 0 a feasible solution to the Dual then c · x 0 ≤ b · y 0 (b) ( AB ) T = B T A T Proof. Note: (a) a · b = a T b CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  22. Primal/Dual Linear Program PRIMAL: max ← { c · x | Ax ≤ b , x ≥ 0 } min ← { b · y | A T y ≥ c , y ≥ 0 } DUAL: Lemma. If x 0 is a feasible solution to the Primal and y 0 a feasible solution to the Dual then c · x 0 ≤ b · y 0 (b) ( AB ) T = B T A T Proof. Note: (a) a · b = a T b y T 0 ( Ax 0 ) ≤ y T 0 b = y 0 · b = b · y 0 CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  23. Primal/Dual Linear Program PRIMAL: max ← { c · x | Ax ≤ b , x ≥ 0 } min ← { b · y | A T y ≥ c , y ≥ 0 } DUAL: Lemma. If x 0 is a feasible solution to the Primal and y 0 a feasible solution to the Dual then c · x 0 ≤ b · y 0 (b) ( AB ) T = B T A T Proof. Note: (a) a · b = a T b y T 0 ( Ax 0 ) ≤ y T 0 b = y 0 · b = b · y 0 ( y T 0 A ) x 0 = ( A T y 0 ) T x 0 ≥ c T x 0 = c · x 0 QED CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  24. Duality Theorem of Linear Programming PRIMAL: max ← { c · x | Ax ≤ b , x ≥ 0 } min ← { b · y | A T y ≥ c , y ≥ 0 } DUAL: Lemma. If x 0 is a feasible solution to the Primal and y 0 a feasible solution to the Dual then c · x 0 ≤ b · y 0 Max PRIMAL Min DUAL CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  25. Duality Theorem of Linear Programming PRIMAL: max ← { c · x | Ax ≤ b , x ≥ 0 } min ← { b · y | A T y ≥ c , y ≥ 0 } DUAL: Lemma. If x 0 is a feasible solution to the Primal and y 0 a feasible solution to the Dual then c · x 0 ≤ b · y 0 Max PRIMAL ≤ Min DUAL CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  26. Duality Theorem of Linear Programming PRIMAL: max ← { c · x | Ax ≤ b , x ≥ 0 } min ← { b · y | A T y ≥ c , y ≥ 0 } DUAL: Lemma. If x 0 is a feasible solution to the Primal and y 0 a feasible solution to the Dual then c · x 0 ≤ b · y 0 Max PRIMAL ≤ Min DUAL LP Duality Theorem If Primal feasible and range of obj functn bounded from above then Dual feasible and the two attain equal optima: ( ∃ feasible x ∈ R n , y ∈ R k )( c · x = b · y ) CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  27. Duality Theorem of Linear Programming PRIMAL: max ← { c · x | Ax ≤ b , x ≥ 0 } min ← { b · y | A T y ≥ c , y ≥ 0 } DUAL: Lemma. If x 0 is a feasible solution to the Primal and y 0 a feasible solution to the Dual then c · x 0 ≤ b · y 0 Max PRIMAL ≤ Min DUAL LP Duality Theorem If Primal feasible and range of obj functn bounded from above then Dual feasible and the two attain equal optima: ( ∃ feasible x ∈ R n , y ∈ R k )( c · x = b · y ) Max PRIMAL = Min DUAL CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  28. Program checking Untrusted party wishes to sell us a cloud service to solve huge LPs Money-back Guarantee: gives optimal solution whenever one exists Can we catch them at cheating without running a trusted LP solver on our problems? We can check that the solution they bring is feasible . Can we check it is optimal? CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend