honors combinatorics
play

Honors Combinatorics CMSC-27410 = Math-28410 CMSC-37200 Instructor: - PowerPoint PPT Presentation

Honors Combinatorics CMSC-27410 = Math-28410 CMSC-37200 Instructor: Laszlo Babai University of Chicago Week 8, Thursday, May 28, 2020 CMSC-27410=Math-28410 CMSC-3720 Honors Combinatorics Variance of sum of random variables Var ( X ) = E


  1. Honors Combinatorics CMSC-27410 = Math-28410 ∼ CMSC-37200 Instructor: Laszlo Babai University of Chicago Week 8, Thursday, May 28, 2020 CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  2. Variance of sum of random variables Var ( X ) = E (( X − E ( X )) 2 ) = E ( X 2 ) − ( E ( X )) 2 variance � Var ( X ) ≥ 0 standard deviation σ ( X ) = Var ( X ) CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  3. Variance of sum of random variables Var ( X ) = E (( X − E ( X )) 2 ) = E ( X 2 ) − ( E ( X )) 2 variance � Var ( X ) ≥ 0 standard deviation σ ( X ) = Var ( X ) Cov ( X , Y ) = E ( XY ) − E ( X ) E ( Y ) covariance If X , Y independent then Cov ( X , Y ) = CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  4. Variance of sum of random variables Var ( X ) = E (( X − E ( X )) 2 ) = E ( X 2 ) − ( E ( X )) 2 variance � Var ( X ) ≥ 0 standard deviation σ ( X ) = Var ( X ) Cov ( X , Y ) = E ( XY ) − E ( X ) E ( Y ) covariance If X , Y independent then Cov ( X , Y ) = 0 CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  5. Variance of sum of random variables Var ( X ) = E (( X − E ( X )) 2 ) = E ( X 2 ) − ( E ( X )) 2 variance � Var ( X ) ≥ 0 standard deviation σ ( X ) = Var ( X ) Cov ( X , Y ) = E ( XY ) − E ( X ) E ( Y ) covariance If X , Y independent then Cov ( X , Y ) = 0 Cov ( X , X ) = CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  6. Variance of sum of random variables Var ( X ) = E (( X − E ( X )) 2 ) = E ( X 2 ) − ( E ( X )) 2 variance � Var ( X ) ≥ 0 standard deviation σ ( X ) = Var ( X ) Cov ( X , Y ) = E ( XY ) − E ( X ) E ( Y ) covariance If X , Y independent then Cov ( X , Y ) = 0 Cov ( X , X ) = Var ( X ) CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  7. Variance of sum of random variables Var ( X ) = E (( X − E ( X )) 2 ) = E ( X 2 ) − ( E ( X )) 2 variance � Var ( X ) ≥ 0 standard deviation σ ( X ) = Var ( X ) Cov ( X , Y ) = E ( XY ) − E ( X ) E ( Y ) covariance If X , Y independent then Cov ( X , Y ) = 0 Cov ( X , X ) = Var ( X ) Y = � n i = 1 X i Var ( Y ) = CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  8. Variance of sum of random variables Var ( X ) = E (( X − E ( X )) 2 ) = E ( X 2 ) − ( E ( X )) 2 variance � Var ( X ) ≥ 0 standard deviation σ ( X ) = Var ( X ) Cov ( X , Y ) = E ( XY ) − E ( X ) E ( Y ) covariance If X , Y independent then Cov ( X , Y ) = 0 Cov ( X , X ) = Var ( X ) Y = � n i = 1 X i Var ( Y ) = � � j Cov ( X i , X j ) = � i Var ( X i ) + � i � j Cov ( X i , X j ) i If the X i are independent then Var ( Y ) = CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  9. Variance of sum of random variables Var ( X ) = E (( X − E ( X )) 2 ) = E ( X 2 ) − ( E ( X )) 2 variance � Var ( X ) ≥ 0 standard deviation σ ( X ) = Var ( X ) Cov ( X , Y ) = E ( XY ) − E ( X ) E ( Y ) covariance If X , Y independent then Cov ( X , Y ) = 0 Cov ( X , X ) = Var ( X ) Y = � n i = 1 X i Var ( Y ) = � � j Cov ( X i , X j ) = � i Var ( X i ) + � i � j Cov ( X i , X j ) i If the X i are independent then Var ( Y ) = � i Var ( X i ) CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  10. Variance of sum of random variables Var ( X ) = E (( X − E ( X )) 2 ) = E ( X 2 ) − ( E ( X )) 2 variance � Var ( X ) ≥ 0 standard deviation σ ( X ) = Var ( X ) Cov ( X , Y ) = E ( XY ) − E ( X ) E ( Y ) covariance If X , Y independent then Cov ( X , Y ) = 0 Cov ( X , X ) = Var ( X ) Y = � n i = 1 X i Var ( Y ) = � � j Cov ( X i , X j ) = � i Var ( X i ) + � i � j Cov ( X i , X j ) i If the X i are pairwise independent then Var ( Y ) = � i Var ( X i ) CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  11. Variance of sum of random variables X = ± 1 with prob ( 1 / 2 , 1 / 2 ) E ( X ) = CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  12. Variance of sum of random variables X = ± 1 with prob ( 1 / 2 , 1 / 2 ) E ( X ) = 0 Var ( X ) = CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  13. Variance of sum of random variables X = ± 1 with prob ( 1 / 2 , 1 / 2 ) E ( X ) = 0 Var ( X ) = E ( X 2 ) − ( E ( X )) 2 = 1 − 0 = 1 CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  14. Variance of sum of random variables X = ± 1 with prob ( 1 / 2 , 1 / 2 ) E ( X ) = 0 Var ( X ) = E ( X 2 ) − ( E ( X )) 2 = 1 − 0 = 1 X i = ± 1 with prob ( 1 / 2 , 1 / 2 ) independent ( i ∈ [ n ]) Y := � n i = 1 X i CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  15. Variance of sum of random variables X = ± 1 with prob ( 1 / 2 , 1 / 2 ) E ( X ) = 0 Var ( X ) = E ( X 2 ) − ( E ( X )) 2 = 1 − 0 = 1 X i = ± 1 with prob ( 1 / 2 , 1 / 2 ) independent ( i ∈ [ n ]) Y := � n i = 1 X i Var ( Y ) = CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  16. Variance of sum of random variables X = ± 1 with prob ( 1 / 2 , 1 / 2 ) E ( X ) = 0 Var ( X ) = E ( X 2 ) − ( E ( X )) 2 = 1 − 0 = 1 X i = ± 1 with prob ( 1 / 2 , 1 / 2 ) independent ( i ∈ [ n ]) Y := � n Var ( Y ) = � n i = 1 X i i = 1 Var ( X i ) = n CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  17. Variance of sum of random variables X = ± 1 with prob ( 1 / 2 , 1 / 2 ) E ( X ) = 0 Var ( X ) = E ( X 2 ) − ( E ( X )) 2 = 1 − 0 = 1 X i = ± 1 with prob ( 1 / 2 , 1 / 2 ) independent ( i ∈ [ n ]) Y := � n Var ( Y ) = � n i = 1 X i i = 1 Var ( X i ) = n standard deviation of Y : CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  18. Variance of sum of random variables X = ± 1 with prob ( 1 / 2 , 1 / 2 ) E ( X ) = 0 Var ( X ) = E ( X 2 ) − ( E ( X )) 2 = 1 − 0 = 1 X i = ± 1 with prob ( 1 / 2 , 1 / 2 ) independent ( i ∈ [ n ]) Y := � n Var ( Y ) = � n i = 1 X i i = 1 Var ( X i ) = n √ √ standard deviation of Y : Var Y = n CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  19. Variance of sum of random variables X = ± 1 with prob ( 1 / 2 , 1 / 2 ) E ( X ) = 0 Var ( X ) = E ( X 2 ) − ( E ( X )) 2 = 1 − 0 = 1 X i = ± 1 with prob ( 1 / 2 , 1 / 2 ) independent ( i ∈ [ n ]) Y := � n Var ( Y ) = � n i = 1 X i i = 1 Var ( X i ) = n √ √ standard deviation of Y : Var Y = n √ If k = O ( n ) and k ≡ n ( mod 2 ) then P ( Y = k ) = Θ( CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  20. Variance of sum of random variables X = ± 1 with prob ( 1 / 2 , 1 / 2 ) E ( X ) = 0 Var ( X ) = E ( X 2 ) − ( E ( X )) 2 = 1 − 0 = 1 X i = ± 1 with prob ( 1 / 2 , 1 / 2 ) independent ( i ∈ [ n ]) Y := � n Var ( Y ) = � n i = 1 X i i = 1 Var ( X i ) = n √ √ standard deviation of Y : Var Y = n √ If k = O ( n ) and k ≡ n ( mod 2 ) then √ P ( Y = k ) = Θ( 1 / n ) CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  21. Variance of sum of random variables X = ± 1 with prob ( 1 / 2 , 1 / 2 ) E ( X ) = 0 Var ( X ) = E ( X 2 ) − ( E ( X )) 2 = 1 − 0 = 1 X i = ± 1 with prob ( 1 / 2 , 1 / 2 ) independent ( i ∈ [ n ]) Y := � n Var ( Y ) = � n i = 1 X i i = 1 Var ( X i ) = n √ √ standard deviation of Y : Var Y = n √ If k = O ( n ) and k ≡ n ( mod 2 ) then √ P ( Y = k ) = Θ( 1 / n ) √ If k = Θ( n ) then P ( | Y | ≤ k ) = CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  22. Variance of sum of random variables X = ± 1 with prob ( 1 / 2 , 1 / 2 ) E ( X ) = 0 Var ( X ) = E ( X 2 ) − ( E ( X )) 2 = 1 − 0 = 1 X i = ± 1 with prob ( 1 / 2 , 1 / 2 ) independent ( i ∈ [ n ]) Y := � n Var ( Y ) = � n i = 1 X i i = 1 Var ( X i ) = n √ √ standard deviation of Y : Var Y = n √ If k = O ( n ) and k ≡ n ( mod 2 ) then √ P ( Y = k ) = Θ( 1 / n ) √ If k = Θ( n ) then P ( | Y | ≤ k ) = Θ( 1 ) CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  23. Variance of sum of random variables X = ± 1 with prob ( 1 / 2 , 1 / 2 ) E ( X ) = 0 Var ( X ) = E ( X 2 ) − ( E ( X )) 2 = 1 − 0 = 1 X i = ± 1 with prob ( 1 / 2 , 1 / 2 ) independent ( i ∈ [ n ]) Y := � n Var ( Y ) = � n i = 1 X i i = 1 Var ( X i ) = n √ √ standard deviation of Y : Var Y = n √ If k = O ( n ) and k ≡ n ( mod 2 ) then √ P ( Y = k ) = Θ( 1 / n ) √ If k = Θ( n ) then P ( | Y | ≤ k ) = Θ( 1 ) √ Central Limit Theorem: for k = O ( n ) � k 1 e − t 2 / ( 2 n ) dt P ( | Y | ≤ k ) ≈ √ 2 π n − k CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  24. Strong concentration of sum of independent random variables √ Central Limit Theorem: for k = O ( n ) � k 1 e − t 2 / ( 2 n ) dt P ( | Y | ≤ k ) ≈ √ 2 π n − k tail hard to estimate – too small against the error we may conjecture P ( | Y | ≥ k ) ≈ e − k 2 / ( 2 n ) CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

  25. Strong concentration of sum of independent random variables √ Central Limit Theorem: for k = O ( n ) � k 1 e − t 2 / ( 2 n ) dt P ( | Y | ≤ k ) ≈ √ 2 π n − k tail hard to estimate – too small against the error we may conjecture P ( | Y | ≥ k ) ≈ e − k 2 / ( 2 n ) Theorem (Chernoff bound) X 1 , . . . , X n independent random variables, | X i | ≤ 1 Y = � n i = 1 X i � �     � � �   � �   < 2 e − a 2 / ( 2 n )  = ⇒ ( ∀ a ∈ R )   P  X i ≥ a   � �       � �        � �  i � � CMSC-27410=Math-28410 ∼ CMSC-3720 Honors Combinatorics

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend