filecheck learning arithmetic
play

FileCheck: learning arithmetic Thomas Preud'homme Numeric - PowerPoint PPT Presentation

FileCheck: learning arithmetic Thomas Preud'homme Numeric constraints in toolchains Register constraints Memory layout e.g. consecutive 32-bit registers for i64 e.g. alignment of fields in struct/class v o i d f ( l o n g * p t r


  1. FileCheck: learning arithmetic Thomas Preud'homme

  2. Numeric constraints in toolchains Register constraints Memory layout e.g. consecutive 32-bit registers for i64 e.g. alignment of fields in struct/class v o i d f ( l o n g * p t r ) { s t r u c t f o o { ( … ) i n t a ; l o n g r e s = p t r [ 0 ] & p t r [ 1 ] l o n g b ; ( … ) } o b j 1 , o b j 2 ; } and rZ, rX, rY Addr X : obj1 and r(Z+1), r(X+1), r(Y+1) Addr X+16: obj2 2

  3. Numeric constraints in toolchains Register constraints Memory layout e.g. consecutive 32-bit registers for i64 e.g. alignment of fields in struct/class v o i d f ( l o n g a , l o n g b ) { s t r u c t f o o { r e t u r n a & b i n t a ; } l o n g b ; } o b j 1 __attribute__ ((aligned (256))) , o b j 2 ; C H E C K : 0 x [ [ A D D R : [ 0 - 9 A - F ] * ] ] 0 0 : o b j 1 C H E C K : a n d r 0 , r 0 , r 2 C H E C K : 0 x [ [ A D D R ] ] 1 0 : o b j 2 C H E C K : a n d r 1 , r 1 , r 3 Problem: subset of cases tested 3

  4. FileCheck: introducing arithmetic Syntax: [ [ # % f m t , V A R : < r e l o p > e x p r ] ] [ [ # % f m t , V A R + / - n u m ] ] C H E C K : a n d r [ [ # X : ] ] , r [ [ # Y : ] ] , r [ [ # Z : ] ] C H E C K : a n d r [ [ # X + 1 ] ] , r [ [ # Y + 1 ] ] , r [ [ # Z + 1 ] ] 4

  5. FileCheck: introducing arithmetic Syntax: [ [ # % f m t , V A R : < r e l o p > e x p r ] ] [ [ # % f m t , V A R + / - n u m ] ] C H E C K : a n d r [ [ # X : ] ] , r [ [ # Y : ] ] , r [ [ # Z : ] ] C H E C K : a n d r [ [ # X + 1 ] ] , r [ [ # Y + 1 ] ] , r [ [ # Z + 1 ] ] C H E C K : 0 x [ [ # % X , A D D R : ] ] o b j 1 C H E C K : 0 x [ [ # % X , A D D R + 1 6 ] ] o b j 2 5

  6. FileCheck: introducing arithmetic Syntax: [ [ # % f m t , V A R : VAR+/-num ] ] C H E C K : a n d r [ [ # X : ] ] , r [ [ # Y : ] ] , r [ [ # Z : ] ] C H E C K : a n d r [ [ # X + 1 ] ] , r [ [ # Y + 1 ] ] , r [ [ # Z + 1 ] ] C H E C K : 0 x [ [ # % X , A D D R : ] ] o b j 1 C H E C K : 0 x [ [ # % X , A D D R + 1 6 ] ] o b j 2 r e t u r n f o o b a ; C H E C K : f i l e . t x t : [ [ # F O O B A _ L I N E : @ L I N E - 1 ] ] : u n k n o w n v a r i a b l e ‘ f o o b a ’ C H E C K : f i l e . t x t : [ [ # F O O B A _ L I N E ] ] : d i d y o u m e a n ‘ f o o b a r ’ 6

  7. FileCheck: introducing arithmetic Syntax: [ [ # % f m t , V A R : == e x p r ] ] Expr operands: + - C H E C K : a n d r [ [ # X : ] ] , r [ [ # Y : ] ] , r [ [ # Z : ] ] C H E C K : a n d r [ [ # X + 1 ] ] , r [ [ # Y + 1 ] ] , r [ [ # Z + 1 ] ] C H E C K : 0 x [ [ # % X , A D D R : ] ] o b j 1 C H E C K : 0 x [ [ # % X , A D D R + F O O _ S I Z E ] ] o b j 2 r e t u r n f o o b a ; C H E C K : f i l e . t x t : [ [ # F O O B A _ L I N E : @ L I N E - 1 ] ] : u n k n o w n v a r i a b l e ‘ f o o b a ’ C H E C K : f i l e . t x t : [ [ # F O O B A _ L I N E ] ] : d i d y o u m e a n ‘ f o o b a r ’ 7

  8. FileCheck numeric expression: future work Syntax: [ [ # % f m t , V A R : == e x p r ] ] Expr operands: + - 8

  9. FileCheck numeric expression: future work Syntax: [ [ # % f m t , V A R : == e x p r ] ] Expr operands: + - * / ( ) ● Richer expressions C H E C K : a r r a y s i z e = [ [ # S I Z E : 8 * ( E L E M _ B I T S I Z E + G A P ) ] ] b y t e s 9

  10. FileCheck numeric expression: future work Syntax: [ [ # % f m t , V A R : < r e l o p > e x p r ] ] Expr operands: + - * / ( ) ● Richer expressions C H E C K : a r r a y s i z e = [ [ # S I Z E : 8 * ( E L E M _ B I T S I Z E + G A P ) ] ] b y t e s ● Inequalities C H E C K : s i z e = [ [ # S I Z E : < 4 2 ] ] b y t e s 10

  11. FileCheck numeric expression: future work Syntax: [ [ # % f m t , V A R : < r e l o p > e x p r ] ] Expr operands: + - * / ( ) ● Richer expressions C H E C K : a r r a y s i z e = [ [ # S I Z E : 8 * ( E L E M _ B I T S I Z E + G A P ) ] ] b y t e s ● Inequalities C H E C K : s i z e = [ [ # S I Z E : < 4 2 ] ] b y t e s ● Suggestions? Contribute to llvm-dev ML thread 11

  12. THANK YOU Thomas Preud'homme thomasp@graphcore.ai 12

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend