harada toru osaka electro communication university
play

Harada, Toru Osaka - PowerPoint PPT Presentation

2009227-28,


  1. 特定領域研究「ストレンジネスで探るクォーク多体系」理論班主催 「ストレンジクォークを含むクォーク多体系分野の理論的将来を考える」研究会 2009年2月27-28日, 熱海市 ハイパー核反応の今後 原田 融 Harada, Toru 大阪電気通信大学 Osaka Electro-Communication University Neyagawa 572-8530, Osaka, Japan harada@isc.osakac.ac.jp

  2. -これまでにどういう新しい物理を明らか にしてきたか? ・生成のメカニズムとDWIA計算の改良 ・  nucleus potential の性質  原子 v.s.(      反応 ・中性子過剰ハイパー核生成 シグマ混合率 - 今後、どういう新しい展開が期待できる のか? ・2重荷電交換反応によるハイパー核生成! - J-PARCに対して、どういう実験を提 案していくのか?

  3. Momentum transfer to  -hyperons 1.20 GeV/c   n →    spin-stretched states   n →    q  MeV/c Stopped p F 0.6 GeV/c ~ 270 MeV/c   N →  q  MeV/c   n →    q  MeV/c substitutional states

  4. Hypernuclear Production Reactions (K  ,   ) ・反応の特徴を生かす ・  状態を選択的に励起 720 MeV/c q  ~ 60MeV/c “Substitutional” (   ,K  ) reactions    0  +  + (   ,K  ) 1040 MeV/c q  ~ 350MeV/c 1f “Spin-Stretched’’ f 7/2 2s 3/2 n  1 [(  ) (  ) ] n j n j  N J 1d d  [ 1 ] j j    max N J J 1p 1s (K  ,   )  Stooped K- Lambda q  ~ 300MeV/c by R.Hausmann and W.Weise neutron H.Bando, T.Motoba, J.Zofka, Int.J.Mod.Phys. A5(1990)4021

  5. Distorted wave impulse approximation ( DWIA)   核内核子  (陽子・中性子) 観測 / 測定 (  + , K + )    p n K 放出粒子 p    入射粒子 素過程 π + + “n” → K + +  p 標的核 Y Double-Differential Cross Sections Strength function   2   d d     ( , ) q       ( )*  ( )  2     S ( , ) q | | | | ( )   S f U i E E          K K dE d d       n K f Elementary cross sections (Fermi-averaging) Meson distorted-wave functions (Eikonal approximation )           ( )* ( ) ( ) ˆ ( ) r ( ) r 4 (2 1) ( ) ( ) r L L i j r Y    K LM LM L   '  l l L 2 1  l ˆ           ( ) ( ) ( ) * ( ) ( ) 4 (2 ' 1) ( ; ) ( ; ) ( 0 ' | )( 0 '0| 0) (k ) 2 j r l j k r j k r l l M LM l l L Y   ' ' LM 2 1 l l K l M K L ' ll

  6. Optimal Fermi-averaging for the  + +n → K + +  t-matrix in  -hypernuclear production from (  + , K + ) reactions T.H and Y.Hirabayashi, NPA744(2004)323

  7.  Quasi-free production spectrum Fermi gas model (K  ,   ) q  ~ 60MeV/c R.H.Dalitz, A.Gal, PL64B(1976)154 720 MeV/c  =206 MeV elem     d d     ( , )   R     d dE d L L peak position - 28 MeV - 58 MeV 270 MeV /c 14 MeV 2 2 k q        ( )(1 ) ( ) F M M U U   N 4 N 2 M M M   30 MeV N 174 MeV (   ,K  ) q  ~ 300MeV/c (K-,  ): 2 MeV 1225 MeV/c width (  ,K+,): 56 MeV  =245 MeV k q k q        F F (K-,  ): 14 MeV M M (  ,K+,): 73 MeV   73 MeV C.B. Dover et al., PRC22 (1980) 2073.

  8.  spectrum by      reaction at 1.20, 1.05GeV/c 12 C (  + ,K + )反応による  -QF生成 P.K.Saha et al., KEK-E438, E521   q ~ 400 MeV/c peak width q ~ 380 MeV/c 1.20GeV/c (MeV) (MeV) ~  ~  1.20GeV/c 1.20GeV/c ~  ~  1.05GeV/c 1.05GeV/c 1.05GeV/c

  9. Elementary cross sections of  →      ‐ reactions 1050 T.O.Binford, et al. PR183(1969)1134 800 N(1650)S11 N(1675)D15  0    d N(1710)P11 (  b/sr)   N(1720)P13    d 600 LAB 1200 K +  400   p →    K +   1200 K +   200   p →     K +   0 1000 1200 1400 1600 1800  momentum (MeV/c)

  10. Optimal Fermi-averaging for an elementary t-matrix T. Harada and Y.Hirabayashi, NPA744 (2004) 323. “Optimal” cross section   + opt     N d k E 2 ˆ ( p   opt ; , ) q K K  + t p   K p    2   (2 )  d v       p K   p  Optimal Fermi-averaged t-Matrix On-shell T-matrix      ˆ    2 sin ( ; , ) ( ) d p dp t E p p p   ˆ N N N N N  opt ( ; , ) q 0 0 Lab t p         2 sin ( ) d p dp p N N N 0 0 *  p p N N given         * 2 * 2 ( p q ) p “On-energy-shell’’ equation E E m m  f i N N N given    * p p p p S,A.Gurvitz, PRC33(1986)422: Optimal factorization   N K

  11. Optimal cross section of the  + +n → K + +  reaction in nuclei opt     + +n → K + +  Cross Section d k E 2 ˆ   opt ( , ) K K t E     2   (2 ) d v       1.05 p K 1.20  1.05GeV/c M(  + n) 1.20GeV/c

  12.  spectrum by      reaction at 1.2GeV/c 28 Si KEK-E438      / d d 1d(5/2)h d  p  1p(3/2)h 1p(1/2)h S  1s(1/2)h The contribution of deep hole-states is important !

  13.  C      Reactions • The calculated spectra in QF region can 1.20 GeV/c explain the experimental data at 1.20 and 1.05GeV/c. • The  energy-dependence originates from the nature of the “optimal Fermi-averaging” 1.05 GeV/c t-matrix. make the width look narrow opt   2   d d    ( , ) q S      dE d d       n K Strength function “Optimal Fermi-averaging” ˆ (   q opt t-matrix ; , ) well-known well-known t p  -nucleus potential Need careful consideration for energy-dependent of the elementary cross section.

  14. Is the  -nucleus potential for   atoms consistent with the (   , K + ) data? 28 Si T.H and Y.Hirabayashi, NPA759(2005)143 Isospin dependence of  -nucleus potentials for N > Z 209 Bi T.H and Y.Hirabayashi, NPA767(2006)206

  15. Observation of n=3   atomic X-ray n=4 RMF n=9 n=10 G. Backenstoss, et al., Z. Phys. A273(1975)137 n=5 C.J. Batty, et al.,Phys.Lett.B 74 (1978) 27 R.J. Powers, et al.,PRC47(1993)1263 n=6  →  u Shifts C   →  u Mg  →  u  →   u Al Widths  →   u Si n=3  →   u S n=4  →  u Ca n=9  →  u Ti  →  u Ba n=5 n=10  →   u W Pb  →   u n=6 Only 23 measurements !!

  16.  ‐ -nucleus optical potentials in 27 Al+  ‐ Imag. LDA-NF LDA-NF DD DD-A’ LDA-S3 LDA-S3 Real WS-sh WS-sh RMF RMF t eff ρ teff RMF RMF LDA-NF LDA-S3 LDA-NF DD-A’ LDA-S3 DD teff WS-sh t eff ρ WS-sh Real part Imag. part Real part Imag. part repulsive strong ( 30-40MeV ) (weak) attractive weak ( < 10MeV ) Type I Type II

  17.  ‐ -nucleus potentials fitted to the  ‐ -atomic data DD-A’ Density-dependent (DD) potential C.J.Batty et al., Phys.Rep.287(1997)385                       ( ) ( ) r r               2 4 1 ( ) ( )         U b B r b B r  0 0 1 1      (0) (0)        m                   ( ) ( ) ( ) ( ) ( ) ( ) r r r r r r p n n p Relativistic mean-field (RMF) potential J. Mares et al., NPA594(1995)311 RMF    Local density approximation (LDA) with YNG-NF LDA-NF    D. Halderson, Phys. Rev. C40(1989)2173 Repulsive T.Yamada and Y.Yamamoto, PTP. Suppl. 117(1994)241 J. Dabrowski, Acta Phys. Pol. B31(2001)2179 Local density approximation (LDA) with SAP3 (simulates ND) LDA-S3 T.Harada, in: Proceedings of the 23nd INS Symp. 1995, p.211 Attractive Shallow Woods-Saxon potential : (V 0 ,W 0 )=( - 10, - 9) MeV WS-sh R.S.Hayano, NPA478(1988)113c t eff ρ –type potential ( B 0 = B 1 =0): a 0 =0.36+i0.20 fm t eff ρ    C.J.Batty, E.Friedman, A.Gal, PTP. Suppl. 117(1994)227

  18. Strong-shifts and widths on  ‐ atoms  ‐ 28 Si 28 Si

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend