neutrino reactions in the resonance region
play

Neutrino reactions in the resonance region Toru Sato RCNP,Osaka - PowerPoint PPT Presentation

Neutrino reactions in the resonance region Toru Sato RCNP,Osaka University J-PARC Branch, KEK Theory Center,KEK T. Sato (Osaka U.) N ( , lM ) N Nov. 12 2018 1 / 29 Motivation CP violation in lepton sector, Mass hierarchy ...


  1. Neutrino reactions in the resonance region Toru Sato RCNP,Osaka University J-PARC Branch, KEK Theory Center,KEK T. Sato (Osaka U.) N ( ν, lM ) N Nov. 12 2018 1 / 29

  2. Motivation ✞ ☎ CP violation in lepton sector, Mass hierarchy ... ✝ ✆ T2K Run1-8 30 Normal 25 Inverted 20 ln(L) 15 ∆ -2 10 5 0 − − − 3 2 1 0 1 2 3 δ CP T2K Collaboration PRL121(2018) 171802 2 σ confidence interval for δ CP does not contain δ CP = 0 , π T. Sato (Osaka U.) N ( ν, lM ) N Nov. 12 2018 2 / 29

  3. Atmospheric Neutrino:Matter effects depends on MH Mass hierarchy with atmospheric neutrinos 5 ➢ Order of neutrino mass eigenstates is not fully known ➢ Propagation in matter modifies oscillation probabilities compared to vacuum, in different ways depending on MH ➢ In particular resonance in muon to electron flavor oscillation NH: ν only - IH: ν only ) cos(zenith) h t P(ν μ → ν e ) Vacuum P(ν μ → ν e ) Matter i n e z ( s o c E ν [GeV^GeV] E ν [GeV^GeV] C. Bronner(Workshop on Shallow and DIS Scattering 2018) T. Sato (Osaka U.) N ( ν, lM ) N Nov. 12 2018 3 / 29

  4. Neutrino flux of current and future LBL experiments (T. Katori, M. Martini arXiv 1611.0770) Arbitrary Arbitrary T2K/Hyper-K T2K MicroBooNE/SBND MiniBooNE/SciBooNE MINERvA (ME) MINOS/MINERvA (LE) NOvA DUNE 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 E (GeV) E (GeV) ν ν Neutrino energy of LBL and Atmospheric neutrino experiments ∼ GeV Importance of neutrino reaction in N ∗ , ∆ resonance region in neutrino detection through ν -nucleus reaction. T. Sato (Osaka U.) N ( ν, lM ) N Nov. 12 2018 4 / 29

  5. CC Neutrino-nucleon reaction (as building block to describe neutrino-nucleus reaction) ν µ n → µ − X (ANL-Osaka model) ν + N → l + N 3 E ν =1GeV d σ /dW[10 -38 cm 2 /GeV] l + N + π 2GeV 3GeV l + N + η 2 l + Y + K l + N + π + π 1 .... l + Y 0 1.2 1.4 1.6 1.8 2 l + N + K W[GeV] .... T. Sato (Osaka U.) N ( ν, lM ) N Nov. 12 2018 5 / 29

  6. contents Model of neutrino reaction in resonance region Pion production in ∆(1232) region Pion production in N ∗ , ∆ region Model of axial vector current Summary T. Sato (Osaka U.) N ( ν, lM ) N Nov. 12 2018 6 / 29

  7. Models of Neutrino reaction in resonance region model dependence of single pion production Neutrino Generator RES+DIS bg, RES=Rein-Sehgal model Alvarez-Ruso, L. and others, NuSTEC White Paper T. Sato (Osaka U.) N ( ν, lM ) N Nov. 12 2018 7 / 29

  8. ∆(1232) region Beyond ∆(1232) region( W < 2 GeV ) Resonane ∆ only several overlaping resonances Non-resonant smaller than Res, Chiral L comparable to Res Channels πN only πN and ππN are comparable ηN, K Λ , K Σ also (MeV) Total cross section of γp T. Sato (Osaka U.) N ( ν, lM ) N Nov. 12 2018 8 / 29

  9. ANL-Osaka DCC model Model developed for N ∗ physics: spectrum of nucleon excited states,transition form factors Fock-Space:isobar( N ∗ , ∆ ) , Meson-Baryon ( πN, ηN, K Λ , K Σ , ππN ( π ∆ , ρN, σN ) ) Interaction:isobar excitation and non-resonant meson-baryon interaction Coupled-channel(Lippmann-Schwinger)equation is solved numerically. T = V + V G 0 T The model is constructed by fitting available data on pion, photon, electron induced meson production reaction(two-body final state). (Recent model: H. Kamano,S.X. Nakamura, T.-S. H. Lee, TS, PRC88,035209(2013) the model is extended for neutron and axial vector current. Axial vector current: g NN ∗ from g NN ∗ assuming PCAC and dipole form factor. π A Neutron: H. Kamano,S.X. Nakamura,T.-S. H. Lee,TS, PRC94 015291 (2016) Neutrino:S. X. Nakamura,H. Kamano, TS,PRD92 07402(2015) T. Sato (Osaka U.) N ( ν, lM ) N Nov. 12 2018 9 / 29

  10. π 0 , π + electroproduction on proton ( σ T + ϵσ L for W = 1 . 1 − 1 . 68 GeV at Q 2 = 0 . 4( GeV/c ) 2 electromagnetic NN ∗ transition form factors are extracted by analyzing ( e, e ′ π ) . T. Sato (Osaka U.) N ( ν, lM ) N Nov. 12 2018 10 / 29

  11. 1 1 0 DCC 𝜏 [10 −38 cm 2 ] DCC 𝜏 [10 −38 cm 2 ] 6 5 4 3 2 1 1.2 0.8 0.1 0.6 0.4 0.2 0 DCC HNV 0 𝜏 [10 −38 cm 2 ] 1.6 1.4 1.2 1 0.05 0.15 1.2 DCC 0.8 0.6 0.4 0.2 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 1.4 0.2 1.6 𝜏 [10 −38 cm 2 ] 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0.3 0.25 0.8 0.6 0.4 2.5 0.08 0.06 0.04 0.02 0 DCC HNV 𝜏 [10 −38 cm 2 ] 4 3.5 3 2 0.2 1.5 1 0.5 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.1 0.12 0.14 𝜏 [10 −38 cm 2 ] 0.14 0.08 0.06 0.04 0.02 0 DCC HNV 0.16 0.16 1.6 0.12 0.18 0.2 1.4 1.2 1 0.8 0.6 0.4 0.2 0.18 0.1 Neutrino induced pion production in ∆(1232) region 𝜉 𝜈 𝑞 → 𝜈 − 𝑞𝜌 + , 𝑋 𝜌𝑂 < 1.4 GeV 𝜉 𝜈 𝑜 → 𝜈 − 𝑜𝜌 + , 𝑋 𝜌𝑂 < 1.4 GeV 𝜉 𝜈 𝑜 → 𝜈 − 𝑞𝜌 0 , 𝑋 𝜌𝑂 < 1.4 GeV 𝐹 𝜉 [GeV] 𝐹 𝜉 [GeV] 𝐹 𝜉 [GeV] 𝜉 𝜈 𝑞 → 𝜈 − 𝑞𝜌 + , 𝑋 𝜌𝑂 < 2 GeV 𝜉 𝜈 𝑜 → 𝜈 − 𝑜𝜌 + , 𝑋 𝜌𝑂 < 2 GeV 𝜉 𝜈 𝑜 → 𝜈 − 𝑞𝜌 0 , 𝑋 𝜌𝑂 < 2 GeV 𝐹 𝜉 [GeV] 𝐹 𝜉 [GeV] 𝐹 𝜉 [GeV] J. Sobczyk,E. Hernandez,S.X. Nakamura, J. Nieves,T. Sato PRD98(2018)073001 Re-analyzed ANL/BNL data, C. Wilkinson et al. PRD90 ANL-Osaka DCC,PRD92, Hernandez,Nieves,Valverde PRD76 Recently FSI effects( 10 ∼ 30% ) found by S.X.Nakamura et al. T. Sato (Osaka U.) N ( ν, lM ) N Nov. 12 2018 11 / 29

  12. Angular distribution of pion dσ CC G 2 F W πN 4 πMk 2 [ A ∗ + B ∗ cos ϕ π + C ∗ cos 2 ϕ π + D ∗ sin ϕ π + E ∗ sin 2 ϕ π ] = dW πN dQ 2 d Ω ∗ π * Y φ * X* π k π θ ’ θ * π k’ Z* ��� ��� ��� ��� ��� ��� k q PV: sin ϕ π ∼ k × k ′ · k π angular distribution is sensitive to reaction dynamics. (phase, res. and non-res.) parity violating T-odd angular distributions( D ∗ , E ∗ ): due to final-state-interaction ( D ∗ , E ∗ ) are sensitive to interference among partial waves. In ∆ resonance region, l π ≤ 1 E ∗ ∝ sin 2 θ π sin( δ P 33 − δ P 31 )[ | M V 1+ || E A 1 − | + | M V 1 − | (4 | M A 1+ | + 2 | E A 1+ | )] . M 1+ , E 1+ : p 3 / 2 , M 1 − , E 1 − : p 1 / 2 T. Sato (Osaka U.) N ( ν, lM ) N Nov. 12 2018 12 / 29

  13. 120 𝜌 80 100 𝜌 140 160 180 −1 −0.5 0 0.5 1 Nr of events cos 𝜄 ∗ BNL 𝜉 𝜈 𝑞 → 𝜈 − 𝑞𝜌 + 𝜌 HNV HNV1 HNV2 DCC 80 90 100 110 120 130 140 0 50 100 150 200 250 300 350 60 𝜚 ∗ 𝜚 ∗ 0.5 20 25 30 35 40 45 50 55 60 65 −1 −0.5 0 1 Nr of events Nr of events cos 𝜄 ∗ 𝜌 ANL 𝜉 𝜈 𝑞 → 𝜈 − 𝑞𝜌 + 30 35 40 45 50 55 60 0 50 100 150 200 250 300 350 Nr of events Pion angular distribution in ∆(1232) region Flux averaged angular distribution of pion: Comparison with ANL/BNL data dσ/d cos θ π dσ/dϕ π J. E. Sobczyk,E. Hernandez,S.X.Nakamura,J. Nieves, T. Sato, PRD98 073001(2018) T. Sato (Osaka U.) N ( ν, lM ) N Nov. 12 2018 13 / 29

  14. Pion production cross section in N ∗ , ∆ region dσ/dW πN of single pion production E ν = 40 GeV Axial 6 6 Vector 4 4 2 2 0 0 1 1.2 1.4 1.6 1.8 2 1 1.2 1.4 1.6 1.8 2 2 2 1.5 1.5 1 1 0.5 0.5 0 0 1 1.2 1.4 1.6 1.8 2 1 1.2 1.4 1.6 1.8 2 + + 1 1 P33 S11,D13 0.5 0.5 D15,P13 0 0 1 1.2 1.4 1.6 1.8 2 1 1.2 1.4 1.6 1.8 2 Neutrino anti-neutrino BEBC NP343,285(1990) νp : ∆(1232) νn : ∆(1232) + higher resonance region T. Sato (Osaka U.) N ( ν, lM ) N Nov. 12 2018 14 / 29

  15. Pion angular distribution in N ∗ , ∆ region dσ ∫ d Ω π Y ∗ lm dW d Ω π < Y lm > = Data:NPB343 (1990)D. Allasia et al. ∫ dσ d Ω π Y ∗ 00 dW d Ω π νp → µ + pπ − , E ν = 20 GeV ) ANL-Osaka Model (preliminary) ( ¯ dσ = σ 0 + σ c cos ϕ π + σ s sin ϕ π + σ 2 c cos 2 ϕ π + σ 2 s sin 2 ϕ π dWd Ω π Y 10 Re(Y 11 ) Im(Y 11 ) 0.8 0.2 0.2 0.6 0.4 0 0 0.2 0 -0.2 -0.2 -0.2 1 1.4 1.8 1 1.4 1.8 1 1.4 1.8 Y 20 Re(Y 21 ) Im(Y 21 ) Re(Y 22 ) Im(Y 22 ) 0.8 0.2 0.2 0.2 0.2 0.6 0.4 0 0 0 0 0.2 0 -0.2 -0.2 -0.2 -0.2 -0.2 1 1.4 1.8 1 1.4 1.8 1 1.4 1.8 1 1.4 1.8 1 1.4 1.8 Angular distribution depends on W, Q 2 . Need to examine models of neutrino event generators. T. Sato (Osaka U.) N ( ν, lM ) N Nov. 12 2018 15 / 29

  16. Axial Vector current of ANL-Osaka Model (total cross section) at Q 2 = 0 Axial Vector current F CC 2 DCC model : 1 π dash, a Total solid πN cross section data: 1 π green, a Total brown ( Q 2 = 0) = 2 f 2 F CC π π σ ( π + N ) 2 3 1 0.8 DCC(full) 2 CCn (Q 2 =0) CCp (Q 2 =0) DCC(1pi) 0.6 F 2 0.4 F 2 1 0.2 0 0 1.2 1.4 1.6 1.8 2 1.2 1.4 1.6 1.8 2 W (GeV) W (GeV) Neutron Proton Description of axial vector current at Q 2 = 0 is consistent with pion scattering data. T. Sato (Osaka U.) N ( ν, lM ) N Nov. 12 2018 16 / 29

  17. Adler’s sum rule ( Q 2 Dependence of axial vector current)preliminary ∫ ∞ 1 = [ g A ( Q 2 )] 2 + [ W A 2 ,n ( ν, Q 2 ) − W A 2 ,p ( ν, Q 2 )] dν ν th W A 2 ,n − W A 2 ,p = 2( W A 2 ,I =1 / 2 − W A 2 ,I =3 / 2 ) / 3 g A ( Q 2 ) : g A = 1 . 27 , M A = 1 . 1 GeV W A 2 ,n/p : DCC model. ν integration: from threshold up to W = 2 GeV N 1.5 Tot 1 0.5 0 -0.5 0 0.02 0.04 0.06 0.08 0.1 Q2(GeV) 2 S.L. Adler,PR143(1965)1144,arXiv:0905.2923, E. A. Paschos, D. Schalla, PRD84(2011),013004. T. Sato (Osaka U.) N ( ν, lM ) N Nov. 12 2018 17 / 29

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend