galaxy formation in the high z universe
play

Galaxy Formation in the High-z Universe Ken Nagamine Osaka / UNLV - PowerPoint PPT Presentation

Galaxy Formation in the High-z Universe Ken Nagamine Osaka / UNLV Recent Collaborators: Isaac Shlosman (Kentucky/Osaka) Jun-Hwan Choi (UT Austin) Jason Jaacks (UT Austin) Hide Yajima (Edinburgh/Osaka) Long Do Cao (Osaka)


  1. 長峯健太郎 Galaxy Formation in the High-z Universe Ken Nagamine Osaka / UNLV Recent Collaborators: Isaac Shlosman (Kentucky/Osaka) Jun-Hwan Choi (UT Austin) Jason Jaacks (UT Austin) Hide Yajima (Edinburgh/Osaka) Long Do Cao (Osaka) Yuu Niino (NAOJ) Robert Thompson (W. Cape) Yang Luo (Osaka) Keita Todoroki (UNLV/Kansas) Emilio Romano-Diaz (Bonn)

  2. Outline • Intro — Λ CDM model & High-z Gal Formation • Observations & Computational Cosmology: Global quantities & Reionization of the Universe Ω * , SFRD, Galaxy MF/LF, … • the 3rd Revolution: Zoom-in Cosmo Hydro Simulation • Massive Gal. Formation at High-z — disk, dust, f esc • Accretion vs. Mergers — In Situ SF & Downsizing • Importance of Feedback in fully non-linear regime • Conclusions & Issues — Towards 2020s

  3. WMAP & Planck satellite results (WMAP9; Hinshaw+ ’13) (ESA March 2013) T ~ 2.73K black body with ~10 -5 fluctuations

  4. Cosmic Energy Budget ESA March 2013 Ω M ≈ 0 . 27 − 0 . 32 ( Ω M , Ω Λ , Ω k ) ≈ (0 . 3 , 0 . 7 , 0 . 0) Ω Λ ≈ 0 . 68 − 0 . 73

  5. Concordance Λ CDM model WMAP , Planck: ( Ω M , Ω Λ , Ω b , h, σ 8 , n s ) ≈ (0 . 3 , 0 . 7 , 0 . 04 , 0 . 7 , 0 . 8 , 0 . 96) SN Ia • Successful on large-scales • Can we understand galaxy formation in the context of Λ CDM model? FFT simulate “Back-bone of structure” Tegmark+ (2004) ( cf. パリティ 11 月号記事)

  6. Cosmic Timeline Observations are rapidly approaching the first galaxies What are the sources responsible for reionization & early chemical enrichment? Fan+ ’08 Illiev+ ’06

  7. Redshift Frontier NASA

  8. Hubble Ultra Deep Field HUDF Deepest universe that the humankind have ever seen. 2003~2004 Hubble Extreme Deep Field (XDF) 2012

  9. 1996 Lilly-Madau Diagram Stellar mass formed per unit time per unit volume • 3 major uncertainties: • dust extinction • faint-end of LF (flux limit) • IMF

  10. SFRD & UV Lum. Density (Bouwens+ ’14) (cf., Dunlop+, Ellis+, Finkelstein+, McLure+, Oesch+, Ouchi+, Schenker+, etc.)

  11. Signatures of Reionization High-z Quasar Spectrum ( ∝ SFR) Konno+’14 Mortlock+’11 • Lya/continuum is absorbed by HI in IGM at z>6 • Declining fraction of LAEs (Stark+11, Ono+12, Pentericci+11,14, Schenker+12,14, Treu+13, Finkelstein+14) • Accelerated decline at z ≳ 7 (stronger for LAE? Konno+14 ) • QSO/GRB Lya damping wing —> Large X HI (>10% at z=6-7; Mortlock+11, Totani+14 ) • Natural that no LAEs detected at z ≳ 8?

  12. First Galaxy Formation in Atomic Cooling Halos First Star Halo ~10 6 M ⦿ atomic cooling H2 cooling First Galaxy Halo ~10 8 M ⦿ Atomic Cooling Halo T vir ~ 10 4 K Bryan & Norman ’98

  13. Computational Cosmology Self-consistent galaxy formation scenario from first principles (as much as possible) z~1100 Radiative cooling/heating, Star formation, z=100 & Feedback z=10 Initial conditions z=3 Cosmological params, Dark energy, Dark matter, Baryons (+expanding universe) z=0 Gravity + Hydrodynamics

  14. Cosmological Hydrodynamic Codes Eulerian mesh (e.g. Cen & Ostriker ’92; Katz+’96; KN+’01 ) - Eulerian mesh, PM gravity solver, shock capturing hydro - fast; good baryonic mass res. at early times - low final spatial resolution in high- ρ regions, but good at low- ρ regions AMR (adaptive mesh refinement: e.g. Enzo, RAMSES, …) - Eulerian root grid, refine as necessary - multi-grid PM gravity solver, ZEUS hydro, PPM hydro AMR-SPH comparison: - high dynamic range, but slower O’Shea, KN+ ‘05 SPH (Smoothed Particle Hydrodynamics: e.g. GADGET, GASOLINE, … ) - Lagrangian, particle-based (both gas & dark matter) - Tree-PM for gravity - SPH for hydro - fast; good spatial resolution in high- ρ region, but not so good in low- ρ region Moving Mesh (e.g. AREPO)

  15. Cosmological SPH Simulations • modified GADGET-3 SPH code (Springel ’05 + additional physics) radiative cooling/heating (w/ metals), SF model, SN & galactic wind feedback with multicomponent variable velocity (MVV) model (Choi & KN ’11), self-shielding correction (KN+10) • Advantage over zoom-in runs: larger statistical samples of galaxies Run Name Box Size Particle Count m dm m gas z end com ✏ [ h � 1 Mpc] [ h � 1 M � ] [ h � 1 M � ] [ h � 1 kpc] DM & Gas H 2 2 ⇥ 144 3 2 . 01 ⇥ 10 7 4 . 09 ⇥ 10 6 N144L10 10.00 2.77 3.00 2 ⇥ 500 3 1 . 84 ⇥ 10 7 3 . 76 ⇥ 10 6 N500L34 33.75 2.70 3.00 2 ⇥ 600 3 2 . 78 ⇥ 10 5 5 . 65 ⇥ 10 4 N600L10 10.00 0.67 6.00 2 ⇥ 400 3 9 . 37 ⇥ 10 5 1 . 91 ⇥ 10 5 N400L10 10.00 1.00 6.00 2 ⇥ 400 3 3 . 60 ⇥ 10 7 7 . 34 ⇥ 10 6 N400L34 33.75 3.38 3.00 2 ⇥ 600 3 2 . 78 ⇥ 10 8 5 . 65 ⇥ 10 7 N600L100 100.00 4.30 0.00 Fiducial: Pressure-based SF model Schaye & Dalla Vecchia ’08 Choi & KN ’09, ’10, ’11 H 2 -SF model Thompson, KN+ ’13

  16. Sub-grid Multiphase ISM model Each SPH ptcl is pictured as a multiphase hybrid gas. (Yepes+ ’97) Springel & Hernquist ’03 1 log Σ SFR [ M yr -1 kpc -2 ] 0 -1 hot phase cold phase -2 -3 cold gas -4 10 100 1000 SFR: Σ gas [ M pc -2 ] For each star ptcl: gas recycling fraction Population Synthesis Model Chabrier IMF (~Kroupa) [0, 100] Msun 6 metallicity (controls the normalization; or equivalently, the SF efficiency.) various filters (n th ~ 0.1 - 1 cm -3 ) E(B-V)=0 ~ 1.0

  17. SF in the Reionization Epoch Time low-mass gals Pressure-based SF model high-mass PopIII gals Big Bang

  18. Redshift Evolution of LF & MF@z=6-9 (3-param Schechter fits) Rest-frame UV LF Galaxy Stellar Mass Fcn -6 WISH-EDS & HST 0 0 WISH-UDS (d) JWST limit z=6 z=6 α M =-2.26 -2 -2 α L =-2.15 z=9 α M =-2.87 -4 -4 -6 -6 -25 -20 -15 Rest-frame UV mag Log (Stellar Mass) Steep faint-end slope is a generic KN+ ’04; Night+ ’06; Finlator+ ’06 prediction of Λ CDM model Jaacks+ ’12a,b

  19. Okamoto+ ’14 Shimizu+ ’14 Gadget-3 SPH w/ AGN feedback

  20. UV LFs at z=4-8: Obs vs. Sim Simulations DM halo MF + M/L evol. Steepening of the faint-end slope towards high-z (Bouwens+ ’14) even to α ≲ -2 (cf., Dunlop+, Ellis+, Finkelstein+, McLure+, Oesch+, Ouchi+, Schenker+, etc.)

  21. Reionization of the Universe Madau+ ’99 Munoz & Loeb ’11 M ★ <10 8 10 8 <M ★ <10 9 M ★ >10 9 Jaacks, Choi & KN ‘12a Low mass gals dominate the contrib. to the ionizing photons & they can maintain ionization to z~6

  22. SPH implementation of H 2 -SF model ρ h ✤ We modify the multiphase model to SN cloud evaporation cloud include the H 2 mass fraction. growth star formation ✤ Change t * --> free-fall time of the region. ρ H 2 GMC growth ✤ SF efficiency: ε ff = 0.01 ρ c (Krumholz & Tan 2007, Lada et al. 2010) . ⇢ H 2 ⇢ ∗ = (1 − � ) ✏ ff ˙ one SPH particle t ∗ s 3 π t ? = t ff = where 32 G ρ gas Thompson, KN+ ’13 (cf. Christensen+; Gnedin+, Robertson+…..)

  23. LFs with H 2 -SF model WISH-EDS & WISH-UDS JWST limit Jaacks, Thompson, KN ’13 HST limit Kuhlen+ ’12 (AMR) (cf. O’Shea, KN+’05: Enzo-Gadget comparison) � L � L � β � − 1 � � � α � − L Φ ( L ) = φ ∗ exp 1 + , Modified Schechter Func. L t L ∗ L ∗ (cf. Loveday+ ’97) # of low-mass gals is significantly reduced at M uv >-16 Future test with JWST.

  24. Reionization of the Universe Jaacks, Thompson, KN ’13 Low mass gals dominate the contrib. to the ionizing photons & they can maintain ionization to z~6

  25. 後半: Massive Gals & Downsizing Romano-Diaz ‘14 Yajima+ ‘14

  26. Hubble Ultra Deep Field How did these gals come about?

  27. Three Revolutions in Cosmological Hydro Simulations 2001-2011 2012~ 1990’: 1st 2nd Rev. 3rd Rev. Revolution Larger scale, medium First cosmological, but resolution w. subgrid coarse calculation Zoom-in method allows models much higher res. Resolution~100 kpc Resolution~ few kpc E.g., Cen ’92 Resolution~ E.g., KN+ ’01 Katz+ ’96 20-100pc Springel & Hernquist ’03

  28. Example Zoom-in Sim Constrained Realization • Quasar host-like 5- σ region (20 cMpc/h) • 3.5 cMpc/h zoom-in region • ϵ =300 com pc; ~30pc (proper @z~10) • m dm ~5e5 M ⦿ • m gas ~1e5 M ⦿ 1 cMpc (Romano-diaz+’11, ’13 sim)

  29. z=10.2 Romano-Diaz+ ‘11 resolution ~ 30 pc (proper) Distinct massive disk gal already at z~10 Mtot ∼ 1.1 × 10 10 h − 1 M ⊙ total disk mass is ∼ 2.9 × 10 9 h − 1 M ⊙ M star,disk ~ 8 × 10 8 h − 1 M ⊙ Mgas ∼ 4.8 × 1010 M ⊙ M star ∼ 4.1 × 10 10 M ⊙ z=6.3 Yajima+ ‘14 M dust /M metal = 0.4, i.e., M dust = 0.008 M gas (Z/Z ⊙ )

  30. Yajima+ ‘14 Very high SFR The most massive galaxy: M star ∼ 8.4 × 10 10 M ⊙ , M dust ∼ 4.1 × 10 8 M ⊙ , SFR ∼ 745 M ⊙ yr − 1 ( z = 6.3) Close to solar metallicity Large amount of dust in massive gals

  31. UV: 1600 A rest-frame IR: 106 µm rest (850 µm obs) surface brightness in the log scale in units of erg s − 1 cm − 2 Hz − 1 arcsec − 2 . Yajima+ ‘14

  32. Escape Fraction of Ionizing Photons Authentic (Nakamoto+ ’01, M tot ∼ 7 × 10 11 M � Halo A 216 kpc Halo B Log X HI 48 kpc -6 -4 -2 0 M tot ∼ 1 × 10 10 M � Wise+ ’14 Yajima, Choi, KN ’11

  33. Escape Fraction of Ionizing Photons Yajima+‘11 Yajima+‘14

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend