toru harada kek j parc
play

Toru Harada /KEK - PowerPoint PPT Presentation

KEK 2017 2017 11 20-22 , Toru Harada /KEK J-PARC


  1. KEK 理論センター研究会「ハドロン・原子核の最前線 2017 」 2017 年 11 月 20-22 日,KEK , つくば市 ハイパー核の物理 原田 融 Toru Harada 大阪電気通信大学 /KEK 理論センター J-PARC 分室 Osaka E.-C. Univ./KEK Theory Center, J-PARC Branch 1

  2. Contents 1. Introduction 2. NN,YN,YY Interaction S= - 1 Hypernuclei 3. • L hypernuclei • ( S hypernuclei ) S= - 2 Hypernuclei 4.  Keywords • X hypernuclei Hyperon mixing • LL hypernuclei + 5. Summary Coupled-channels 2

  3. ハイパー核物理の課題  原子核深部を探る – ハイペロンはパウリ排他律を受けないためプローブ(探針)となる  Impurity Physics (不純物物理) – “ 糊 ” としての役割 – 原子核構造(1粒子運動、殻構造、クラスター構造、集団運動)の変化  Baryon-Baryon Interaction – YN, YY Interaction based on SU f (3) – 核力の統一的理解・斥力芯の起源  “Exotic” Nuclear Physics – ストレンジネスが拓く新しい原子核の面白さ  Neutron Star の構造と進化 – 高密度核物質への戸口 , EOS, 最大質量 , 冷却 , … 3

  4. 3-Dimensional Nuclear Chart with Strangeness 4

  5. Our understanding of hyperon s.p. potentials X S L N +30 MeV Re. X S ? ? 0 ( ) U U L 0 ( ) U 0 ( ) 0 (N) U -3 MeV Im. -14 MeV Re. Re. Im. -30 MeV -30 MeV Re. Strong repulsive, -51 MeV 𝑽 𝟏 ~ −30 MeV 𝑽 𝟏 ~ Spin-isospin dep. 𝑽 𝑴𝑻 ~ 2 MeV ( − 14)฀ (0)MeV ? X width ? 𝑽 𝟏 ~ − 51 MeV 𝑽 𝟏 ~+ 30 MeV LL N 3BF ? LL - X N mixing ? 𝑽 𝑴𝑻 ~ 22 MeV 𝑽 𝑴𝑻 ?, S width ? S mixing Prob.? H-particle ? 5

  6. Neutron star core = “ An interesting neutron-rich hypernuclear system”      ( , , ) x g g i Coupling constant ratio; iY iY iN  0 U L,S,X,.. S  0 U X  0 U S  0 U X K-, ..  0 U S  0 U [F. Weber, PPNP 54(2005)193] X Cassiopeia A nebula [R. Knorren, M. Prakash, P.J.Ellis, PRC52(1995)3470] NASA/CXC/SAO. Hyperon-mixing 6

  7. “Hyperon Puzzle’’ in Massive Neutron Stars シャピロ遅延 (Shapiro delay )  P. B. Demorest et al., Nature, 467 (2010) 1081. PSR J1614-2230 M=(1.97 ± 0.04) M sun (NS:1.97 M ☉ +WD: 0.50 M ☉ ) PSR J0348-0432 M=(2.01 ± 0.04) M sun (NS:2.01 M ☉ +WD: 0.172 M ☉ )  J.Antoniadis et al., Science 340(2013) 6131. → Collapse of massive NS !? With hyperons

  8. Repulsive MBF in “Hyperon Puzzle’’ Y. Yamamoto, et al.,PRC90(2014)045805 3B/4B repulsion NNN+YNN w/o hyp MPa 3B/4B repulsion NNN only ESC RMF w/multibody coupling NLO+3BF NLO NSC97f Haidenbauer, et al. Eur. Phys. J. A53(2017) 121. Julich04 Ohnishi, et al., SCHDM2017 8

  9. J-PAR ARC ( Japan Proton Accelerator Research Complex) 9

  10. NN, YN, YY 相互作用

  11. Hyperon-nucleon (YN) Interaction  One-Boson-Exchange model  Nijmegen potential NHC-D/F  NSC89  NSC97e,f  ESC04a-d  ESC06  ESC08a-c [Th.A. Rijken, M. M. Nagels,Y. Yamamoto, PTPS185(2010)14  Funabashi-Gifu potential [I. Arisaka et al., PTP104(2000)995]  Quark Cluster model  Kyoto-Niigata potential RGM-F  FSS  fss2 [Y. Fujiwara et al, PRC54(1996) 2180; PPNP58 (2007)439]  Chiral LO, NLO Effective Field Theory  Julich potential [H.Polinder, et al., NPA779 (2006) 244;PLB653 (2007) 29] [J.Haidenbauer, et.al., NPA 915(2013)24]  Latice QCD  HAL QCD Collaboration [H. Nemura, et al., PLB 673 (2009) 136; T. Inoue, et al., PTP124 (2010) 591; PRL106 (2011) 162002] 11

  12. NN, , YN YN, , YY YY In Inter teracti actions ons Flavor SU(3) f symmetry symmetric antisymmetric        [8] [8] [27] [10*] [10 ] [8 ] [ 8 ] [1 ] s a 1 S 0 3 S 1 LL NN: 4233 data ( 0<T lab <350 MeV) S= 0 NN NN SN,SN - LN,LN 35 data S= -1 SS,XN - SL - SS,XN - SS - LL S= -2 S= -3 XS,XS - XL XX XX S= -4 C.B. Dover and H. Feshbach, Ann. Phys. 198(1990)321

  13. Short-range repulsive core in baryon-baryon interaction Spin-flavor SU(6) symmetry Quark Cluster Model M.Oka,K.Shimizu,K.Yazaki, PLB130(1983)365; NPA464(1987)700 antisymmetric symmetric Quark-exchange (anti-symmetrized)      [3] [3] [6] [4 2] [51] [33] L =0 orbital x flavor-spin x color singlet Pauli forbidden state S = 0 state [51] [33] LL - X N- SS(I0) , H-dibaryon 1 S N(I=1/2, 1 S 0 ) Pauli forbidden 8 S 1 NN( 1 S 0 ) 4/9 5/9 27 S = 1 state [51] [33] 5/9 4/9 8 A S N(I=3/2, 3 S 1 ) almost Pauli forbidden 1/9 10 8/9 NN( 3 S 1 ), L N- S N(I=1/2, 3 S 1 ) 4/9 5/9 10*  SU(6)sp symm.  Strongly spin-isospin dependence 13

  14. S N threshold cusp state or bound state ( I =1/2, 3 S 1 ) Bound state NSC97f NF ND Cusp state NSC89 14

  15. S N threshold cusp ( I =1/2, 3 S 1 ) H. Machner et al ., NPA 901, 65 (2013). T.H.Tan, PRL23(1969)395. • S= ‐ 1 dibaryon search O.Braun et al., NPB124(1977)45. • YN interaction study D.Eastwood et al.,PRD3(1971)2603. • (K - , p ) reaction study Y. Ichikawa et al., PTEP2014, 101D03 d( p + , K + ) S (1385) S + n K - d → p - L p R.H.Dalitz, Deloff, Czech.J.Phys.B32(1982)1021

  16. Baryon-Baryon force in SU(3) basis from lattice QCD T. Inoue et al., HAL QCD Collaboration, NPA881 (2012) 28.        [8] [8] [27] [8 ] [ 1 ] [10*] [10 ] [ 8 ] s a 1 S 0 [1] [27] [8s] 3 S 1 - 3 D 1 [10] [10*] [8a]  at the SU(3) F limit corresponding to Mπ = MK = 837 MeV.  possibility of a bound H-dibaryon in the limit. 16

  17. Hyperon single-particle potentials from QCD on lattice T. Inoue, et al., (HAL QCD Collaboration), PoS INPC2016, 277 (2016). 17

  18. S = - 1 Hypernuclei (1)

  19. L ハイパー核  L 粒子の1粒子ポテンシャルとスピン軌道力  Gamma-ray spectroscopy of light hypernuclei  ( p + ,K + ) 反応によるハイパー核の生成  Overbinding Problem on s-Shell Hypernuclei  ( e,e’K + ) 反応によるハイパー核の生成 Recent topics  中性子過剰ハイパー核  CSB(Charge Symmetry Breaking)  L ハイパー核の弱崩壊 19

  20. Binding energies of L single-particle states 30 MeV 2  U N 3 A.Gal, E.V. Hungerford, D.J. Millener, Rev.Mod.Phys. 88 (2016) 035004. 0 Woods-Saxon form 208 Pb Λ 0 /(1 exp[(  - + - POTENTIAL ( MeV)  - –10 )/ ]) 1/3 U U r R a 0 ( 1) fm R r A L L –20 r  U L  a  0 1.165fm 30.05 MeV 0.6 fm 0 20 –30 0 2 4 6 8 10 r (fm)

  21. G-matrix calculation in symmetric nuclear matter  - L single-particle potential depth 1 1.35fm k N’ F       +  ( , ) , | ( ) | , U k k k g k k k F L L L L L L F N N N N k Pauli-operator N Q N   +  ( ) N ( ) g v v g  - YN YN YN YN QTQ G-matrix Effects of the L N- S N coupling in nuclear matter Y.Nogami, E.Satoh, NPB19(1970)93 a s = -1.8fm, a t = -1.6fm L N- S N coupled channel L N single channel (unit in MeV) 0 + = N ‘ S S = + + -10 L N L N L N N L L L L N N N N N Spin-isospin saturated -20 Spin-isospin saturated ~ -28 -34.2 -30 Exp. L NN NN Q N v v three-bod body L S L S -40 N , N N , N e S force N -50.6 -52.9 suppressed repulsive Overbinding! -50 21

  22. L single-particle energies in symmetric nuclear matter   - ( , ) 1 U k 1.35fm k OBEP: Nijmegen YN potential Models L L F F G-matrix calc. Scattering length a s -2.54fm -2.10fm -2.70fm -1.90fm -2.29fm -2.78fm -2.51fm a t -1.73fm -1.65fm -1.96fm -1.88fm -1.41fm -1.86fm -1.75fm +4.5 +6.9 +0.9 +0.4 0 -2.1 (unit in MeV) -0.9 -0.2 -3.2 -14.4 -12.8 odd -8.0 -9.2 -12.7 -13.1 -12.3 -13.7 -10.0 -10 1 S 0 -7.4 -14.6 -22.9 -20.7 -26.0 3 S 1 - 3 D 1 -20 -28.1 -23.8 -23.3 -21.4 -21.5 -31.6 NSC89 -25.1 -28 -31.1 -30.8 -30 NHC-F -34.3 -34.0 Exp. NSC97f -35.6 -38.5 NSC97e -40.5 NSC08b -40.8 NSC08a -40 NSC04a NHC-D NSC08c Rijken- Yamamoto et al. Bando- Yamamoto Rijken- 1999 Nagels- Yamamoto Yamamoto 2009 Rijken- 1985 2006 Yamamoto 2016 Y. Yamamoto, H. Bando, PTP.Suppl.81(1985)9; Y. Yamamoto, et al.,PTP.Suppl.117(1994)361; Th.A.Rijken, V.G.J.Stoks, Y.Yamamoto, PRC59(1999)21; Th.A.Rijken, Y.Yamamoto, PRC73(2006) 044008; Y.Yamamoto, T.Motoba, T.A.Rijken, PTP.Suppl.185(2010)72. 22

  23. L s.p. potential and L spin-orbit splitting in 89 L Y V L ? (Exp.) 1.7 MeV H. Hotchi et al., PRC64(2001)044302 V L - 30 MeV 0 A  ( ) a  0.6 fm V L 2 MeV LS WS analysis [O. Hashimoto, T. Tamura, PPNP57(2006)564] Y. Yamamoto et al., PTPS185(2010)72 G-matrix T. Motoba et al., folding model PTPS185(2010)197 SM analysis  L N -1 particle-hole ex.  inter-shell coupling V L 0.2 MeV V L - LS 37.2 MeV 0 A   23 ( )

  24. Gamma-ray spectroscopy of light hypernuclei 44 (-8) 494 (74) E(calc) keV xxx E( LS) keV (xx) 693 (72) (Millener) H. Tamura et al., NPA853(2010)3 507 (65) 504 248 (61) (92) 267 23 153 (56) (-33) (61) 92 (42) Spin-dependence of the effective L N interaction [R.H.Dalitz, A.Gal, AnnPhys.116(1978)167] Microscopic Shell-Model including L N- S N coupling effects A = 7,9 [ D.J.Millener,NPA835(2010)11] A > 9 E13@J-PARC  L N spin-dependent force/ L N- S N coupling force/Charge symmetry breaking ( L p≠ L n)  Magnetic moments m L in a nucleus from B(M1) 4 L He, 10 L B, 11 L B, 19 L F 24

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend