on the interaction of an electro dynamic on the
play

On the Interaction of an Electro-dynamic On the Interaction of an - PowerPoint PPT Presentation

On the Interaction of an Electro-dynamic On the Interaction of an Electro-dynamic Shaker and a Beam with Stiffness Nonlinearity B. Tang 1 , M.J. Brennan 2 , G. Gatti 3 1 Institute of Internal Combustion Engine, Dalian University of Technology,


  1. On the Interaction of an Electro-dynamic On the Interaction of an Electro-dynamic Shaker and a Beam with Stiffness Nonlinearity B. Tang 1 , M.J. Brennan 2 , G. Gatti 3 1 Institute of Internal Combustion Engine, Dalian University of Technology, China 2 Departamento de Engenharia Mecânica, UNESP, Ilha Solteira, Brazil 3 Department of Mechanical, Energy and Management Engineering, University of Calabria, Italy

  2. Dalian Dalian Dalian is a small city in China……, Only 6 million people live in the city  Only 6 million people live in the city 

  3. Dalian Dalian Dalian University of Technology (DUT) Dalian University of Technology (DUT)

  4. 2010, ISVR, Dalian Univ Soton, UK 2013-14, UNESP, Brasil x m O k h , δ k h , δ c v k v y l

  5. Motivation 40 40 softening 35 de t Amplitud 30 30 linear 25 hardening 20 20 placement Nonlinear Isolators 15 10 10 Disp 5 0 0 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 Non-dimensional frequency Vibration Jumps Energy Harvesting Devices

  6. Objective Objective • To identify nonlinear stiffness characteristics of a • To identify nonlinear stiffness characteristics of a structure experimentally (b) (b) f ( t ) Input f ( t ) Output x ( t ) Input Output m O O x ( t ) c k 1 , k 3 Grey Box – we know the type of nonlinear stiffness expected

  7. Example Structure 1 Example Structure 1 A Vibration Absorber

  8. A Vibration Absorber Deformed brass plate m = 7 5 g m 7.5 g Brass plate (0.15 mm) Support structure (52 mm diameter) Support structure (52 mm diameter)

  9. Vibration Test x x 1 m c x 2 k 1 , k 3 Shaker mass m shaker Shaker c shaker k shaker suspension Bin Tang, M.J. Brennan, G. Gatti, N.S. Ferguson. Experimental characterization of a nonlinear vibration absorber using free vibration. Journal of Sound and Vibration 367 (2016) 159-169.

  10. Vibration Test    shaker absorber m m  shaker m EQ Q   m m m m shaker x m EQ c k 1 , k 3 1 , 3

  11. Experimental result Time range over which analysis is conducted -4 x 10 3 0 s 0.3 s 2 nt (m) nt (m) 1 placemen placemen 148 Hz 0 Disp -1 Disp Low frequency -2 High frequency -3 0 0.2 0.4 0.6 0.8 Ti Time (s) ( ) t (s) Free vibration Steady state CS

  12. System Characteristics     x t ( ) A t ( ) cos ( ) t Create analytic signal Create analytic signal Hilbert transform   w t ( ) x t ( ) j H[ ( )] x t         A t ( ( ) ) w t ( ( ) ) ( t ) angle w ( t ) ( t ) a g e w ( t )   d   Envelope Envelope d t ( ) ( ) t B Backbone curve kb dt

  13. System Characteristics Backbone curve Envelope -4 -4 2 5 x 10 3 x 10 2.5 3 2 m) m) acement (m ) elope (m) cement ( 2 velope (m) 1.5 Displac 1 1 Displa Enve Env 1 0.5 0 0 80 90 100 110 120 130 140 0 0.05 0.1 0.15 0.2 0.25 0.3 f (Hz) t (s) Frequency (Hz) Frequency (Hz) Time (s) Time (s)

  14. Backbone Curve 2      1 3 k     dd n 2 2 2     3 t A t d dd    k k m m 4 4 m m n n 1 1 EQ EQ EQ     c 2 m k EQ 1 Backbone curve Envelope 5 7.5 x 10 -8 7 Slope -8.5 og(m)) pe) -9 9 6 6 nvelope) (lo g(Envelo 2  2 (rad/s) 2  d -9.5 5  log(En Log -10 4 -10.5 3 -11 0 1 2 3 4 5 6 6.5 0 0.05 0.1 0.15 0.2 0.25 0.3 Displacement 2 (m 2 ) -8 t (s) Displacement 2 (m) 2 x 10 Time (s)

  15. Estimated Parameters Linear Linear Nonlinear Nonlinear Damping D i Mass (g) stiffness stiffness Ratio (N/m) (N/m 3 ) Shaker and 351 0.04 17000 - support support Vibration Current 7 55 7.55 0 02 0.02 2380 2380 5 93 × 10 10 5.93 × 10 10 absorber Method RSFM 2730 5.17 × 10 10

  16. Estimated Parameters Restoring Force Surface Method (RFSM) 3          cx cx k x k x k x k x m m x x • Set Set 1 3 EQ   ( , , x x m x ) • Plot 3D surface EQ • • Extract a section of the surface between Extract a section of the surface between     0.1 m/s x 0.1 m/s 2 rce (N) 1 e (N) oring For oring force 0 Resto Resto -1 -2 -3 -2 -1 0 1 2 3 Displacement (m) -4 Displacement (m) x 10

  17. Estimated Parameters Restoring Force Surface Method (RFSM) 3          cx cx k x k x k x k x m m x x   • Set Set   1 3 EQ x t ( ) A t ( ) cos ( ) t   ( , , x x m x ) • Plot 3D surface EQ • • Extract a section of the surface between Extract a section of the surface between     0.1 m/s x 0.1 m/s -4 3 x 10 2 2 rce (N) t (m) 1 e (N) (m) 1 oring For oring force acement placement 0 0 Disp Resto Displa -1 Resto -1 -2 -3 -2 0 0.05 0.1 0.15 0.2 0.25 0.3 -3 -2 -1 0 1 2 3 t (s) Displacement (m) -4 Displacement (m) Time (s) x 10

  18. Example Structure 2 Example Structure 2 A Beam with a Compressive Load Compressive Load Bin Tang, M.J. Brennan, V. Lopes Jr., S. da Silva, R. Ramlan. Using nonlinear jumps to estimate cubic stiffness nonlinearity: An experimental study Proceedings of the to estimate cubic stiffness nonlinearity: An experimental study, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 230(19) (2016) 3575-3581.

  19. Beam Experiment P Axial force First Mode Beam        3 mq cq k q k q F cos t 1 3   2  4 P l EI  k = 1 Accelerometer   1  2 3 EI 2 l      4 EA   k k Shaker Shaker 3 3 8 l   Al Al  m 2

  20. Frequency Sweep (0.05 Hz/s) leration Acce 0 0 50 50 100 100 150 150 Time (s)

  21. Frequency Sweep (0.05 Hz/s) Increasing excitation amplitude 0 0 0 0 0 leration 0 0 0 0 0 0 0 0 Acce 0 0 0 0 0 0 0 0 150 0 0 0 50 50 100 100 150 150 0 0 50 50 100 100 150 0 50 50 100 100 150 0 150 0 50 50 100 100 150 150 180 180 Time (s) Increasing excitation amplitude Increasing excitation amplitude 0 0 0 0 on 0 0 0 0 Accelerati 0 0 0 0 0 0 0 0 0 50 100 150 200 230 0 50 100 150 200 230 0 50 100 150 200 230 0 50 100 150 200 Time (s)

  22. Frequency Sweep (0.05 Hz/s)   k 3 Amplitude at 2 2 2 2       3 1 2 Y Jump frequency dd n d jump frequency 4 4 m m 4 7 x 10 7 2 nd Mode 2 nd Mode Slope p 6 5 6.5 ad/s) 2 2  dd 6 6 2 (ra 2 (rad/s )  d 5 5 5.5 Shaker 5 0 0.2 0.4 0.6 0.8 1 2 (mm) -5 Y d x 10

  23. Comparison with RFSM 30 20 e (N) k  k 7 43 kN/m 7.43 kN/m g force 10 1 0 0 storing 3 k  4.78e8 N/m 3 -10 Res -20 -30 -3 -2 -1 0 1 2 3 Displacement (mm) ( )

  24. Frequency Sweep (0.05 Hz/s) Increasing excitation amplitude 5 6 6 isp. 4 4 4 4 4 en Point Di 2 2 2 0 . 0 Drive 2 2 2 2 2 4 4 4 5 6 6 0 50 100 150 0 50 100 150 0 50 100 150 0 50 100 150 180 Time (s) i ( ) Why are there peaks and bulge? 0 2.5 2 0 2 0 Disp. 1 0 1 0 0 dle Point D 0 0 0 0 -1 0 -1 0 -2 0 -2 -2.5 Mid 0 0 50 100 150 0 50 100 150 180 150 0 50 100 150 0 50 100 Time (s) Increasing excitation amplitude

  25. Beam Model (a) Axial force Beam Accelerometer Shaker Shaker

  26. Measured and estimated FRF 10 1 10 0 10 10 -1 1 10 -2 10 -3 20 30 40 50 60 70 80 90     X X Y Y X X Y Y X X n n      A 11 , B 21 Y A Ar Ar 11        2 2   F j 2 F 1 Y Z F 1 Y Z  r 1 b r r r 11 sh 11 sh   X n  2      Z k m j c   Y B Ar Br sh sh sh sh 21        2 2 F j 2  r 1 b r r r

  27. Measured displacement transmissibility 5 4.5 4 5 4 3.5 T 3 2.5 2 32 34 36 38 40 42 44 f (H ) f (Hz) X T  T B Beam model shape changing? Beam model shape changing? X A

  28. Measured relative displacement -3 2 x 10 x 10 1.5 mm) - X A ) (m 1 ( X B 0.5 0 32 32 34 34 36 36 38 38 40 40 42 42 44 44 f (Hz) Relative displacements follow the similar trend when Relative displacements follow the similar trend when the nonlinearity in the beam is severity

  29. Dynamic stiffness of the whole system Linear case:   Z Z Z cs 11 sh F F 1 1   Z b 11 Y X 11 11 A A Nonlinear case: 3 3     2            2 2 Z Z k k k k X X k k X X X X m m + + jc jc cs cs sh3 A b 3 B A cs cs 4 4

  30. Nelder-Mead simplex algorithm X 1 X X T 3 3   A = , B = A 2        2 2 Z k k X k X X m + jc F Z F F cs cs sh3 A b 3 B A cs cs 4 4 cs 2.5 x 10 -3 2 x 10 -3 2 x 10 -3 x 10 -3 2.5 x 10 3 10 -3 2.5 x 10 2 1.5 1.5 2 2 ) / F | (m/N) / F | (m/N) 1.5 F | (m/N) 1.5 1.5 1 1 1 1 | X / 1 1 | X / | X / 1 0.5 0.5 0.5 0.5 0.5 0 0 0 0 32 34 36 38 40 42 32 34 36 38 40 42 32 34 36 38 40 42 0 32 34 36 38 40 42 32 34 36 38 40 42 f (Hz) f (Hz) f (Hz) f (Hz)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend