numerical shape optimization
play

Numerical Shape Optimization Praveen. C praveen@math.tifrbng.res.in - PowerPoint PPT Presentation

Numerical Shape Optimization Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in IMI Workshop on Control and Inverse Problems IISc,


  1. Derivative of boundary functional � J (Γ , u ) = f ( u )d s Γ We perturb Γ by normal displacements Γ ǫ = { x + ǫα ( s ( x )) n : x ∈ Γ } We must consider change in area element d s due to this perturbation. First look at a line element d s with radius of curvature R , d s = R d θ Due to boundary perturbation, line element changes to � � 1 − ǫ α d s ǫ = d s R Same formula holds in 3-D but R is mean curvature defined using two orthogonal tangential coordinates R = 1 1 + 1 R 1 R 2 Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 21 / 114

  2. � Γ ǫ f ( u ǫ )d s in terms of integral and quantities on Γ First express Consider x ∈ Γ and corresponding x ǫ ∈ Γ ǫ given by x ǫ = x + ǫαn u ( x ) + ǫα∂u u ( x ǫ ) ∂n ( x ) + O ( ǫ 2 ) = u ǫ ( x ǫ ) u ( x ǫ ) + ǫ ˜ u ( x ǫ ) + O ( ǫ 2 ) = u ( x ) + ǫα∂u u ( x ) + O ( ǫ 2 ) = ∂n ( x ) + ǫ ˜ � � u ( x ) + ǫα∂u f ( u ǫ ( x ǫ )) + O ( ǫ 2 ) = f ∂n ( x ) + ǫ ˜ u ( x ) � � α∂u f ′ ( u ) + O ( ǫ 2 ) = f ( u ) + ǫ ∂n + ˜ u � � αf ′ ( u ) ∂u ∂n − α f ( u ǫ )d s ǫ u + O ( ǫ 2 ) d s + ǫf ′ ( u )˜ = f ( u )d s + ǫ Rf ( u ) Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 22 / 114

  3. Finally the sensitivity is given by � � � � 1 f ′ ( u ) ∂u ∂n − f ( u ) f ′ ( u )˜ ǫ [ J (Γ ǫ ) − J (Γ)] = α d s + u d s + O ( ǫ ) R Γ Γ Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 23 / 114

  4. Euler equations: compressible, inviscid flow ρ = density u = ( u 1 , u 2 , u 3 ) = velocity p = pressure Total energy per unit volume E = ρe + 1 2 ρ | u | 2 e = internal energy per unit mass For an ideal gas, p γ − 1 + 1 p 2 ρ | u | 2 e = = ⇒ E = ( γ − 1) ρ γ = C p For air γ = 1 . 4 C v Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 24 / 114

  5. Conservation of mass Rate of change of mass inside volume Ω = – flux of mass going out through ∂ Ω � � d ρ d x = − ρ ( u · n )d s d t Ω ∂ Ω Using divergence theorem � � d ρ d x = − div( ρu )d x d t Ω Ω Since this should hold for any control volume Ω ∂ρ ∂t + div( ρu ) = 0 Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 25 / 114

  6. Conservation of momentum: Newton’s law We consider a material volume Ω( t ), i.e, Ω( t ) moves with the fluid Rate of change of momentum = Net force acting on the body � � � d ρu i d x = R i d s + ρf i d x d t Ω( t ) ∂ Ω( t ) Ω( t ) For an inviscid fluid, R = − pn . The left hand side is � � � d ∂ ρu i d x = ∂t ( ρu i )d x + ( ρu i )( u · n )d s d t Ω( t ) Ω( t ) ∂ Ω( t ) � � ∂ = ∂t ( ρu i )d x + div( ρu i u )d x Ω( t ) Ω( t ) � � � � ∂ ∂p ∂t ( ρu i )d x + div( ρu i u )d x = − d x + ρf i d x ∂x i Ω( t ) Ω( t ) Ω Ω ∂t ( ρu i ) + div( ρu i u ) + ∂p ∂ = ρf i ∂x i Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 26 / 114

  7. Conservation of energy Rate of change of energy = rate of work done by all forces � � � d E d x = ( R · u )d s + ρ ( f · u )d x d t Ω( t ) ∂ Ω( t ) Ω( t ) Using divergence theorem � � � � ∂E ∂t d x + div( Eu )d x = − div( pu )d x + ρ ( f · u )d x Ω Ω Ω Ω( t ) ∂E ∂t + div[( E + p ) u ] = ρf · u Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 27 / 114

  8. Euler equations • Mass conservation ∂ρ ∂ ∂ ∂ ∂t + ( ρu 1 ) + ( ρu 2 ) + ( ρu 3 ) = 0 ∂x 1 ∂x 2 ∂x 3 • Momentum conservation ∂ ∂ ∂ ∂ ( p + ρu 2 ∂t ( ρu 1 ) + 1 ) + ( ρu 1 u 2 ) + ( ρu 1 u 3 ) = 0 ∂x 1 ∂x 2 ∂x 3 ∂ ∂ ∂ ∂ ( p + ρu 2 ∂t ( ρu 2 ) + ( ρu 1 u 2 ) + 2 ) + ( ρu 2 u 3 ) = 0 ∂x 1 ∂x 2 ∂x 3 ∂ ∂ ∂ ∂ ( p + ρu 2 ∂t ( ρu 3 ) + ( ρu 1 u 3 ) + ( ρu 2 u 3 ) + 3 ) = 0 ∂x 1 ∂x 2 ∂x 3 • Energy conservation ∂E ∂ ∂ ∂ ∂t + [( E + p ) u 1 ] + [( E + p ) u 2 ] + [( E + p ) u 3 ] = 0 ∂x 1 ∂x 2 ∂x 3 Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 28 / 114

  9. Euler equations: vector conservation form ∂U ∂t + ∂F 1 + ∂F 2 + ∂F 3 = 0 ∂x 1 ∂x 2 ∂x 3 where U is the conserved variables   ρ   ρu 1     U = ρu 2     ρu 3 E and ( F 1 , F 2 , F 3 ) are the flux vectors       ρu 1 ρu 2 ρu 3  p + ρu 2      ρu 1 u 2 ρu 1 u 3  1            p + ρu 2 F 1 = ρu 1 u 2 , F 2 = , F 3 = ρu 2 u 3       2       p + ρu 2 ρu 1 u 3 ρu 2 u 3 3 ( E + p ) u 1 ( E + p ) u 2 ( E + p ) u 3 Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 29 / 114

  10. Euler equations: Hyperbolic property • Flux jacobians A = ∂F 1 B = ∂F 2 C = ∂F 3 ∂U , ∂U , ∂U • Quasi-linear form ∂U ∂t + A ∂U + B ∂U + C ∂U = 0 ∂x 1 ∂x 2 ∂x 3 ω ∈ R 3 • Hyperbolic property: A ( U, ω ) = ω 1 A + ω 2 B + ω 3 C, ◮ All eigenvalues are real ◮ Eigenvectors are linearly independent • Eigenvalues of A ( U, ω ) with | ω | = 1 are u · ω − a, u · ω, u · ω, u · ω, u · ω + a � γp a = speed of sound = ρ Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 30 / 114

  11. Shape design using Euler equations Pressure matching problem Find the shape of the airfoil Γ such that the pressure on the airfoil is close to a specified pressure p ∗ , i.e., � 1 ( p − p ∗ ) 2 d s min 2 Γ Γ The pressure p = p ( U ) is obtained from the solution of the steady Euler equations F x + G y + H z = 0 The fluxes also satisfy the homogeneity property F ( U ) = A ( U ) U, G ( U ) = B ( U ) U, H ( U ) = C ( U ) U Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 31 / 114

  12. Due to change in shape Γ, the solution changes from U to U + ǫ ˜ U F ( U ) + ǫ∂F F ( U + ǫ ˜ ∂U ( U ) ˜ U + O ( ǫ 2 ) U ) = F ( U ) + ǫA ˜ U + O ( ǫ 2 ) = Equation governing first order perturbation ( A ˜ U ) x + ( B ˜ U ) y + ( C ˜ U ) z = 0 For an arbitrary function V � � � V · ( A ˜ V x · A ˜ V · A ˜ U ) x = − U + Un x Ω Ω ∂ Ω � � A t V x · ˜ V · A ˜ = − U + Un x Ω ∂ Ω Then � V · [( A ˜ U ) x + ( B ˜ U ) y + ( C ˜ U ) z ] = 0 Ω Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 32 / 114

  13. becomes � ( A t V x + B t V y + C t V z ) · ˜ − U Ω � V · ( An x + Bn y + Cn z ) ˜ + U = 0 ∂ Ω Define D = An x + Bn y + Cn z we note that   ρ ( u · n )   = normal flux DU = pn + ρu ( u · n ) ( E + p )( u · n ) and on solid wall Γ, u · n = 0   0   DU | Γ = pn 0 Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 33 / 114

  14. Since DU = Fn x + Gn y + Hn z � Fn x + ˜ ˜ Gn y + ˜ DU = Hn z A ˜ Un x + B ˜ Un y + C ˜ = Un z D ˜ = U Also d − 1 � ∂α pn = ˜ � pn + p ˜ n, ˜ n = − t j ∂t j j =1 Denoting V = [ v 1 , v, v 5 ] with v = ( v 2 , v 3 , v 4 ) � � V · D ˜ V · � U = DU Γ Γ � � = V · [0 pn � 0] = v · � pn Γ Γ � � d − 1 � ∂α = p ( v · n ) − ˜ p ( v · t j ) ∂t j Γ Γ j =1 Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 34 / 114

  15. First variation in objective function � � � ∂n − α ( p − p ∗ ) 2 1 p + α ( p − p ∗ ) ∂p ˜ ( p − p ∗ )˜ J = ǫ 2 R Γ To obtain gradient of J wrt α we must eliminate ˜ p . We add the first order perturbation equation to the above equation � 1 ˜ ( A t V x + B t V y + C t V z ) · ˜ J = RHS − U ǫ Ω � V · D ˜ + U ∂ Ω To eliminate ˜ U from the volume integral, we choose V to satisfy A t V x + B t V y + C t V z = 0 , in Ω Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 35 / 114

  16. � � 1 ˜ V · D ˜ V · D ˜ J = RHS + U + U ǫ Γ Γ o � ( p − p ∗ + v · n )˜ = p Γ � � � ∂n − ( p − p ∗ ) 2 ( p − p ∗ ) ∂p + α 2 R Γ � d − 1 � ∂α − p ( v · t j ) ∂t j Γ j =1 � D t V · ˜ + U Γ o To eliminate ˜ p we choose the adjoint boundary conditions p − p ∗ + v · n = 0 , on Γ Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 36 / 114

  17. We choose V on Γ o to eliminate the integral over Γ o • Supersonic inflow: U is specified so ˜ U = 0. No b.c. are imposed on V • Supersonic outflow: No b.c. for U , hence ˜ U � = 0. Choose V = 0 • Subsonic inflow: � � � D t V · ˜ D t V · T − 1 T ˜ T − t D t V · T ˜ U = U = U Γ o Γ o Γ o We have ( T ˜ U ) 1 , 2 , 3 , 4 = 0 while ( T ˜ U ) 5 is arbitrary, so we choose ( T − t D t V ) 5 = 0 • Subsonic outflow: ( T ˜ U ) 1 is specified while ( T ˜ U ) 2 , 3 , 4 , 5 is arbitrary. Hence we choose ( T − t D t V ) 2 , 3 , 4 , 5 = 0 Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 37 / 114

  18. Adjoint Euler equations A t V x + B t V y + C t V z = 0 , in Ω with boundary conditions • supersonic inflow none • supersonic outflow V = 0 • subsonic inflow ( T − t D t V ) 5 = 0 • subsonic outflow ( T − t D t V ) 2 , 3 , 4 , 5 = 0 • solid wall p − p ∗ + v · n = 0 Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 38 / 114

  19. Shape derivative � � � � d − 1 � ∂n − ( p − p ∗ ) 2 1 ( p − p ∗ ) ∂p ∂α ˜ J = α − p ( v · t j ) ǫ 2 R ∂t j Γ Γ j =1 � � � ∂n − ( p − p ∗ ) 2 ( p − p ∗ ) ∂p = α − div Γ ( pv ) 2 R Γ Hence ∂n − ( p − p ∗ ) 2 ∇ α J = ( p − p ∗ ) ∂p − div Γ ( pv ) 2 R Steepest descent update α n +1 = α n − s n ∇ α J ( α n ) Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 39 / 114

  20. Discrete adjoint approach • Approximate PDE using finite volume method R ( X, Q ) = 0 where X ∈ R m X = grid coordinates , Q ∈ R n Q = solution vector , R : R m × R n → R n • Q depends implicitly on X through R ( X, Q ) = 0 • Discrete approximation to objective function I ( X, Q ) Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 40 / 114

  21. Elements of practical shape optimization Shape parameters Surface grid Volume grid CFD solution I Q β X s X d β = d I d I d X d X s d X d X s d β Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 41 / 114

  22. d I Adjoint approach: d X • For shape optimization: I = I ( X, Q ) d X = ∂ I d I ∂X + ∂ I ∂Q ∂Q ∂X • Differentiate state equation R ( X, Q ) = 0 ∂X + ∂R ∂R ∂Q ∂X = 0 ∂Q • Flow sensitivity ∂Q ∂X ; costly to evaluate • Introducing an adjoint variable Ψ ∈ R n , we can write � ∂ I � � ∂R � d I ∂X + ∂ I ∂Q ∂X + ∂R ∂Q + Ψ t d X = ∂Q ∂X ∂Q ∂X Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 42 / 114

  23. Adjoint approach • Collect terms involving the flow sensitivity � ∂ I � � ∂ I � ∂Q d I ∂X + Ψ t ∂R ∂Q + Ψ t ∂R d X = + ∂X ∂Q ∂X • Choose Ψ so that flow sensitivity vanishes � ∂R � t � ∂ I � t ∂Q + Ψ t ∂R ∂ I ∂Q = 0 = ⇒ Ψ + = 0 ∂Q ∂Q • Gradient d X = ∂ I d I ∂X + Ψ t ∂R ∂X Cost of Adjoint-based steepest-descent Cost = O (1) N iter = O ( N ) Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 43 / 114

  24. Optimization steps • β = ⇒ X s = ⇒ X • Solve the flow (primal) equations to steady-state d Q X = ⇒ d t + R ( X, Q ) = 0 = ⇒ Q, I • Solve adjoint equations to steady-state � ∂R � t � ∂ I � t dΨ X, Q = ⇒ d t + Ψ + = 0 = ⇒ Ψ ∂Q ∂Q • Compute gradient wrt grid X d X = ∂ I d I ∂X + Ψ t ∂R ∂X d β = d I d I d X d X s − β − ǫ d I = ⇒ β ← d X d X s d β d β Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 44 / 114

  25. Automatic Differentiation • Discrete adjoint method requires � ∂R � t � ∂R � t ∂J ∂J ∂X , ∂Q, Ψ , Ψ ∂X ∂Q • Differentiate J and R by hand and write new code to compute above derivatives • J and R are already available as a computer code ◮ elementary operations: ∗ , /, + , − ◮ elementary functions: sin, exp, log, etc. ◮ chain rule of differentiation ◮ use Automatic Differentiation • AD tool: automates the application of chain rule of differentiation X Code for Code for AD tool ∂J J ( X, Q ) ∂X Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 45 / 114

  26. Automatic Differentiation: forward and backward mode X ∈ R m , Y ∈ R n , Y = F ( X ) • Forward mode � ∂F � X ∈ R m , X ∈ R m ˙ X ∈ R n ˙ → ∂X • Backward mode � ∂F � t X ∈ R m , Y ∈ R n ¯ Y ∈ R m ¯ → ∂X Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 46 / 114

  27. Automatic Differentiation: TAPENADE Code residue.f to compute X, Q → R ( X, Q ) = RES REAL X(M), Q(N), RES(N) CALL RESIDUE(X, Q, RES) Differentiate RES wrt Q tapenade -backward -vars Q -outvars RES residue.f � � t ∂R Generates new code residue b.f : X, Q, Ψ → Ψ ∂Q REAL X(M), Q(N), RES(N) REAL QB(N), RESB(N) CALL RESIDUE_B(X, Q, QB, RES, RESB) Ψ SUBROUTINE RESIDUE_B(X, Q, QB, RES, RESB) ⎛ ⎞ T ∂ R Ψ ⎜ ⎟ ⎝ ∂ Q ⎠ Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 47 / 114

  28. Reverse mode Consider a subroutine which takes in a vector x ( n ) and returns a scalar function f = f ( x ). A computer program to compute f contains a sequence of computations. Each line takes some set of previously computed values and returns a new value. t 1 = L 1 ( T 0 ) x ∈ R n , T 0 = x t 2 = L 2 ( T 1 ) . . t r ∈ R . . . = . � T r − 1 � t p = L p ( T p − 1 ) T r = t r f = L p +1 ( T p ) The function f as coded, in general, depends on all of these variables x, t 1 , t 2 , . . . , t p Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 48 / 114

  29. AD tools • Source transformation and operator overloading • See http://www.autodiff.org Tool Modes Method Lang ADIFOR F ST Fortran ADOLC F/B OO C TAPENADE F/B ST Fortran/C TAF/TAMC F/B ST Fortran/C MAD F OO Matlab Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 49 / 114

  30. Important criteria for MDO applications of complex, 3D models Consistent: Is the parameterization consistent across multiple disciplines? Airplane shape design variables: Are the design variables directly related to the airplane shape design variables such as camber, thickness, twist, shear, and planform? Compact: Does the parameterization provide a compact set of design variables? 10s vs 1000s Smooth: Does the shape perturbation maintain a smooth geometry? Local control: Is there any local control on shape changes? Analytical sensitivity: Is it feasible to calculate the sensitivity analytically? Grid deformation: Does the parameterization allow the grid to be deformed? Setup time: Can a shape optimization application be set up quickly? hours, days, weeks, months? Existing grid: Does the parameterization allow the existing grid to be reused? Does it require to reverse engineer the baseline design parameters? CAD: Is there a direct connection to the CAD system? Samareh: Survey of shape parameterization techniques Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 50 / 114

  31. Examples of shape optimization Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 51 / 114

  32. Quasi 1-D flow h ( x ) Inflow Outflow x Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 52 / 114

  33. Quasi 1-D flow • Quasi 1-D flow in a duct ∂t ( hU ) + ∂ ∂ ∂x ( hf ) = d h d xP, x ∈ ( a, b ) t > 0       ρ ρu 0   ,   ,   p + ρu 2 U = ρu f = P = p E ( E + p ) u 0 h ( x ) = cross-section height of duct • Inverse design: find shape h to get pressure distribution p ∗ • Optimization problem: find the shape h which minimizes � b ( p − p ∗ ) 2 d x J = a Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 53 / 114

  34. Quasi 1-D flow Inflow face 1 i N 2 / 1 2 − / 1 i + i Outflow face Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 54 / 114

  35. Quasi 1-D flow • Finite volume scheme d t + h i +1 / 2 F i +1 / 2 − h i − 1 / 2 F i − 1 / 2 = ( h i +1 / 2 − h i − 1 / 2 ) d U i h i P i ∆ x ∆ x • Discrete cost function N � ( p i − p ∗ i ) 2 J = i =1 • Control variables h 1 / 2 , h 1+1 / 2 , . . . , h i +1 / 2 , . . . , h N +1 / 2 • N = 100 Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 55 / 114

  36. Duct shape Duct shape 1.9 Target shape Current shape 1.8 1.7 1.6 1.5 h 1.4 1.3 1.2 1.1 1 0 2 4 6 8 10 x Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 56 / 114

  37. Target pressure distribution p ∗ Target pressure 2.5 AUSMDV KFVS LF 2 Pressure 1.5 1 0.5 0 2 4 6 8 10 x Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 57 / 114

  38. Current pressure distribution Starting pressure 2.5 AUSMDV KFVS LF 2 Pressure 1.5 1 0.5 0 2 4 6 8 10 x Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 58 / 114

  39. Adjoint density 5 AUSMDV KFVS 0 LF −5 −10 Adjoint density −15 −20 −25 −30 −35 0 2 4 6 8 10 x Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 59 / 114

  40. Convergence history: Explicit Euler Convergence history with AUSMDV flux 0 Flow Adjoint −1 −2 −3 −4 Residue −5 −6 −7 −8 −9 −10 1000 2000 3000 4000 5000 6000 7000 No of iterations Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 60 / 114

  41. Shape gradient Gradient 35 AUSMDV KFVS LF 30 25 20 Gradient 15 10 5 0 0 2 4 6 8 10 x Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 61 / 114

  42. Shape gradient Gradient 40 AUSMDV KFVS 35 LF 30 25 Gradient 20 15 10 5 0 −5 2 2.5 3 3.5 4 4.5 5 5.5 6 x Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 62 / 114

  43. Validation of Shape gradient Gradient with AUSMDV flux 35 30 B 25 20 Gradient 15 10 C A 5 0 0 2 4 6 8 10 x Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 63 / 114

  44. Validation of shape gradient ∂J ∂h ≈ J ( h + ∆ h ) − J ( h − ∆ h ) 2∆ h ∆ h A B C 0.01 0.4191069499 35.18452823 2.545316345 0.001 0.4231223499 36.10982621 2.556461900 0.0001 0.4231624999 36.11933154 2.556573499 0.00001 0.4231599998 36.11942125 2.556575000 0.000001 0.4231999994 36.11942305 2.556550001 0.0000001 0.4229999817 36.11942329 2.556499971 AD 0.4231628330 36.11941951 2.556574450 Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 64 / 114

  45. Gradient smoothing • Non-smooth gradients G especially in the presence of shocks • Smooth using an elliptic equation � � 1 − ǫ ( x ) d 2 ¯ G ( x ) = G ( x ) d x 2 ǫ i = {| G i +1 − G i | + | G i − G i − 1 |} L i | G i +1 − 2 G i + G i − 1 | L i = max( | G i +1 − G i | + | G i − G i − 1 | , TOL) • Finite difference with Jacobi iterations Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 65 / 114

  46. Gradient smoothing Gradient using AUSMDV flux 35 Original gradient Smoothed gradient 30 25 20 Gradient 15 10 5 0 0 2 4 6 8 10 x Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 66 / 114

  47. Quasi 1-D optimization: Shape 1.9 Target Initial 1.8 1.7 1.6 1.5 h 1.4 1.3 1.2 1.1 1 0 1 2 3 4 5 6 7 8 9 10 x Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 67 / 114

  48. Quasi 1-D optimization: Final shape 1.9 1.8 1.7 1.6 1.5 h 1.4 Target Initial 1.3 Final 1.2 1.1 1 0 1 2 3 4 5 6 7 8 9 10 x Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 68 / 114

  49. Quasi 1-D optimization: Pressure 2.5 2 Target Pressure Initial 1.5 Final 1 0.5 0 1 2 3 4 5 6 7 8 9 10 x Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 69 / 114

  50. Quasi 1-D optimization: Convergence 0 10 Cost Gradient −1 10 −2 10 Cost/Gradient −3 10 −4 10 −5 10 −6 10 0 5 10 15 20 25 30 35 40 45 50 No. of iterations Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 70 / 114

  51. Quasi 1-D optimization: Adjoint density 0 −5 Initial Final Adjoint density −10 −15 −20 −25 0 2 4 6 8 10 x Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 71 / 114

  52. Airfoil shape optimization Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 72 / 114

  53. Shape parameterization • Parameterize the n � deformations � � � x s � � n x � x (0) s A B = + h ( ξ ) ξ y (0) y s n y 1 s 0.9 0.8 m � 0.7 h ( ξ ) = β k B k ( ξ ) 0.6 k =1 h( ξ ) 0.5 0.4 • Hicks-Henne bump functions 0.3 0.2 q k = log(0 . 5) B k ( ξ ) = sin p ( πξ q k ) , 0.1 log( ξ k ) 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 ξ Exact derivatives d X s d β can be • Move points along normal to computed reference line AB Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 73 / 114

  54. Grid deformation Initial grid • Interpolate displacement of surface points to interior points using RBF ˜ f ( x, y ) = a 0 + a 1 x + a 2 y + N � r j | 2 log | � b j | � r − � r − � r j | j =1 Deformed grid where � r = ( x, y ) • Results in smooth grids d X • Exact derivatives d X s can be computed Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 74 / 114

  55. NUWTUN flow solver Based on the ISAAC code of Joseph Morrison http://isaac-cfd.sourceforge.net • Finite volume scheme • Structured, multi-block grids • Roe flux • MUSCL reconstruction with Hemker-Koren limiter • Implicit scheme Source code of NUWTUN available online http://nuwtun.berlios.de Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 75 / 114

  56. Validation of adjoint gradients 80 AD • Dot-product test FD 60 ˙ R ′ ( Q ) ˙ 40 R := Q Gradient 20 R ( Q + ǫ ˙ Q ) − R ( Q ) 0 ≈ ǫ -20 [ R ′ ( Q )] ⊤ ¯ ¯ Q := R -40 R ⊤ ¯ ? Q ⊤ ¯ 5 10 15 20 ˙ ˙ R = Q Hicks-Henne parameter 150 • Upwind schemes and limiters AD FD 100 can cause problems due to 50 non-differentiability Gradient 0 • Check adjoint derivatives -50 against finite difference -100 ◮ NACA0012: C d /C l ◮ RAE2822: C d 5 10 15 20 Hicks-Henne parameter Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 76 / 114

  57. Convergence and limiter: RAE2822 airfoil L ( a, b ) = a ( b 2 + 2 ǫ ) + b (2 a 2 + ǫ ) , 0 < ǫ ≪ 1 2 a 2 − ab + 2 b 2 + 3 ǫ ǫ = 10 − 8 ǫ = 10 − 4 1 1 Density Density x-momen x-momen y-momen 0.1 y-momen z-momen z-momen Energy Energy 0.1 0.01 0.001 0.01 0.0001 Residue Residue 1e-05 0.001 1e-06 1e-07 0.0001 1e-08 1e-09 1e-05 1e-10 0 200 400 600 800 1000 1200 1400 1600 0 200 400 600 800 1000 1200 1400 1600 Number of iterations Number of iterations Adjoint iterations blow-up No blow-up Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 77 / 114

  58. Iterative convergence tests Primal residual Adjoint residual R n = || R ( Q n ) || R n = || [ R ′ ( Q ∞ )] ⊤ Ψ n + I ′ ( Q ∞ ) || 100 0.1 10 1 0.1 0.8 0.08 0.01 0.001 0.0001 Adjoint residual 0.06 0.00001 Cl 0.6 Residue 1 x 10 -6 Cd Cl Cd 1 x 10 -7 0.04 1 x 10 -8 Flow residual 1 x 10 -9 0.4 1 x 10 -10 0.02 1 x 10 -11 1 x 10 -12 1 x 10 -13 0.2 0 1 x 10 -14 1 x 10 -15 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 Number of iterations Number of iterations Convergence characteristics for the flow and adjoint solutions, and convergence of lift and drag coefficients, for RAE2822 airfoil at M ∞ = 0 . 73 Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 78 / 114

  59. Test cases NACA0012: M ∞ = 0 . 8, α = 1 . 25 o I = C d C l 0 C l C d 0 RAE2822: M ∞ = 0 . 729, α = 2 . 31 o • Penalty approach � � � � I = C d � 1 − C l � � + ω � C d 0 C l 0 • Constrained minimization min I = C d s.t. C l = C l 0 C d 0 Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 79 / 114

  60. NACA0012: Maximize L/D 0.06 1 0.04 0.5 0.02 Initial -Cp conmin_frcg 0 0 optpp_q_newton steep Initial -0.02 conmin_frcg -0.5 optpp_q_newton steep -0.04 -1 -0.06 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 x/c Method I 100 C d C l N fun N grad Initial 1.000 2.072 0.295 - - 0.170 0.389 0.325 50 13 conmin frcg optpp q newton 0.142 0.329 0.329 50 39 0.166 0.335 0.287 50 45 steep Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 80 / 114

  61. RAE2822: Drag minimization, penalty approach 1.5 0.06 1 0.04 0.02 0.5 Initial -Cp conmin_frcg y 0 optpp_q_newton 0 steep -0.02 Initial -0.5 conmin_frcg optpp_q_newton -0.04 steep -1 -0.06 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 x x Method I 100 C d C l N fun N grad Initial 1.000 1.150 0.887 - - 0.355 0.405 0.890 50 13 conmin frcg optpp q newton 0.351 0.400 0.884 50 51 0.341 0.388 0.884 50 47 steep Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 81 / 114

  62. RAE2822: Lift-constrained drag minimization 1.5 0.06 1 0.04 0.5 0.02 Initial conmin_mfd -Cp fsqp 0 ipopt 0 Initial -0.02 conmin_mfd -0.5 fsqp ipopt -0.04 -1 -0.06 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 x/c Method I 100 C d C l N fun N grad Initial 1.000 1.150 0.887 - - 0.342 0.394 0.881 50 22 conmin mfd fsqp 0.325 0.374 0.887 50 32 0.335 0.385 0.887 45 62 ipopt Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 82 / 114

  63. RAE2822: Lift-constrained drag minimization 1.5 0.06 1 0.04 0.5 0.02 ipopt Initial -Cp 0 0 ipopt -0.02 Initial -0.5 -0.04 -1 -0.06 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 x/c Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 83 / 114

  64. RANS computation M=0.729, Re=6.5 million, Cl=0.88, k-w turbulence model 1.5 RAE2822 Optimized 1 0.5 -Cp 0 -0.5 -1 0 0.2 0.4 0.6 0.8 1 x/c Shape Inviscid RANS AOA C l 100 C d AOA C l 100 C d RAE2822 2.31 0.887 1.150 3.28 0.887 2.558 Optimized 2.31 0.887 0.386 3.22 0.885 1.692 Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 84 / 114

  65. Sensitivity to perturbations 0.04 Initial 200 Initial Optimized Optimized 0.03 150 Drag coefficient Lift/Drag 0.02 100 0.01 50 0 0 0.7 0.71 0.72 0.73 0.74 0.75 0.76 0.7 0.71 0.72 0.73 0.74 0.75 0.76 Mach number Mach number (a) (b) Variation of (a) drag coefficient and (b) L/D with Mach number for RAE2822 airfoil and optimized airfoil Need for robust aerodynamic optimization Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 85 / 114

  66. Adjoints with shocks: Scalar conservation law Consider the functional � +1 J = G ( u ( x, T ))d x − 1 where u is the solution of the conservation law u t + f ( u ) x = 0 , x ∈ (0 , 1) , t ∈ (0 , T ) u ( x, 0) = u 0 ( x ) To compute the derivative of J wrt u 0 we make a small perturbation u 0 − → u 0 + ˜ u 0 . Then solution changes to u + ˜ u and � g ( u ) = d G ˜ J = g ( u ( x, T ))˜ u d x, d u The equation for ˜ u is obtained by linearizing the conservation law u ) t + ( f ′ ( u )˜ (˜ u ) x = 0 ˜ u ( x, 0) = u 0 ˜ Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 86 / 114

  67. To write ˜ J in terms of ˜ u 0 , we introduce the adjoint variable v ( x, t ) � � T � � � ˜ u ) t + ( f ′ ( u )˜ J = g ( u ( x, T ))˜ u ( x, T )d x − v (˜ u ) x d x d t 0 Integrating by parts, we get � � ˜ J = v ( x, 0)˜ u 0 ( x )d x + ( g − v )˜ u ( x, T )d x � T � � � v t + f ′ ( u ) v x − u ( x, t )d x d t ˜ 0 To eliminate ˜ u ( x, t ) and ˜ u ( x, T ) from above equation, choose v t + f ′ ( u ) v x = 0 v ( x, T ) = g ( u ( x, T )) The derivative is given by � ˜ J = v ( x, 0)˜ u 0 ( x )d x Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 87 / 114

  68. Note that the adjoint equation must be solved backward in time, starting from t = T to t = 0. Example: Inviscid Burger’s equation u t + ( u 2 / 2) x = 0 , x ∈ R , t ∈ (0 , T ) � u l x < 0 u ( x, 0) = u r x > 0 Exact solution: � u l x < St S = 1 u ( x, t ) = 2( u l + u r ) u r x > St Consider the objective functional � J = 1 u 2 ( x, T )d x 2 Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 88 / 114

  69. Then the corresponding adjoint equation is v t + uv x = 0 � u l x < ST v ( x, T ) = u ( x, T ) = u r x > ST t t = T x Adjoint solution cannot be determined in the shaded region . In other regions, solution can be determined by going forward in time along the characteristic until you hit t = T line. Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 89 / 114

  70. Back to scalar conservation law Conservation laws can have discontinuous solutions, but the discontinuity must satisfy the Rankine-Hugoniot jump conditions. If there is a discontinuity at x = x s , then it must satisfy f ( u ( x + s , t )) − f ( u ( x − s , t )) = S · ( u ( x + s , t ) − u ( x − s , t )) where S = d x s d t is the shock speed. The linearization of the conservation law must also include the linearization of the jump conditions. d x s d t → d x s d t + d˜ x s x s → x s + ˜ x s , d t � ∂u � � d f � � d f � d˜ d t [ u ] + d x s x s u ] + d x s ∂u d t [˜ d t ˜ x s = d u ˜ u + ˜ x s ∂x d u ∂x Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 90 / 114

  71. � x s ( T ) � +1 J = G ( u ( x, T ))d x + G ( u ( x, T ))d x − 1 x s ( T ) Perturbation in J is x s ( T ) � � +1 ˜ J = g ( u ( x, T ))˜ u ( x, T )d x + g ( u ( x, T ))˜ u ( x, T )d x − [ G ] x s ( T ) ˜ x s ( T ) − 1 x s ( T ) x s ( t ) � T � � T � +1 � � � � u t + ( f ′ ( u )˜ u t + ( f ′ ( u )˜ − v ˜ u ) x d x d t − v ˜ u ) x d x d t 0 − 1 0 x s ( t ) � d˜ � ∂u � � d f � � d f �� � T d t [ u ] + d x s x s u ] + d x s ∂u − v s ( t ) d t [˜ d t ˜ x s − d u ˜ u − ˜ x s d t ∂x d u ∂x 0 Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 91 / 114

  72. After some work we get � +1 ˜ J = v ( x, 0)˜ u 0 ( x )d x − 1 provided the adjoint variables v ( x, t ) and v s ( t ) satisfy the following equations v t + f ′ ( u ) v x = 0 v ( x, T ) = g ( u ( x, T )) v ( x + s ( t ) , t ) = v ( x − v s ( t ) = s ( t ) , t ) d d tv s ( t ) = 0 [ G ] v s ( T ) = [ u ] Adjoint variable requires an interior boundary condition along the shock ( x s ( t ) , t ). This uniquely determines the adjoint solution. Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 92 / 114

  73. Steepest descent: limitations, problems • Multiple optima are common • Convergence towards local optimum: dependance on starting guess S o • Shape gradient: difficult to compute, or impossible • Noisy cost function J Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 93 / 114

  74. Gradient-free methods • Simplex method (Nelder-Mead, Torczon) • Global search methods ◮ Genetic algorithm ◮ Particle swarm optimization ◮ Ant colony optimization ◮ ... • Do not require gradient • Collection of M solutions at any iteration n P n = { x n 1 , x n 2 , . . . , x n M } ⊂ R d • Solutions evolve according to some rules P n +1 = E ( P n ) Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 94 / 114

  75. Particle swarm optimization • Kennedy and Eberhart (1995) • Modeled on behaviour of animal swarms: ants, bees, birds • Swarm intelligence Optimization problem D ⊂ R d min x ∈ D J ( x ) , Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 95 / 114

  76. Particle swarm optimization • Kennedy and Eberhart (1995) • Modeled on behaviour of animal swarms: ants, bees, birds • Swarm intelligence Optimization problem D ⊂ R d min x ∈ D J ( x ) , Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 95 / 114

  77. Particle swarm optimization Particles distributed in design space x i ∈ D, i = 1 , ..., N p X2 X1 Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 96 / 114

  78. Particle swarm optimization Each particle has a velocity v i ∈ R d , i = 1 , ..., N p X2 X1 Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 97 / 114

  79. Particle swarm optimization • Particles have memory ( t = iteration number) Local memory : p t J ( x s i = argmin i ) 0 ≤ s ≤ t Global memory : p t = argmin J ( p t i ) i • Velocity update 2 ( p t − x t v t +1 = ωv t i + c 1 r t 1 ( p t i − x t + c 2 r t i ) i ) i � �� � � �� � Local Global • Position update x t +1 = x t i + v t +1 i i Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 98 / 114

  80. Basic PSO algorithm !"# $%&!&'(&)*+ ,-.&!&-%/+0*(-1&!2 3-4,5!*+1-.!+ 65%1!&-% 7,8'!*+(-1'(+'%8+ 9(-:'(+4*4-;2 7,8'!*+0*(-1&!2+ '%8+,-.&!&-% 3-%0*;9*%1*+< ?- !"!=> A*. @!-, Praveen. C (TIFR-CAM) Shape Optimization IISc, Dec 2009 99 / 114

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend