giant magneto impedance and applications
play

Giant Magneto Impedance and Applications M. Vazquez Instituto de - PowerPoint PPT Presentation

Giant Magneto Impedance and Applications M. Vazquez Instituto de Ciencia de Materiales de Madrid, CSIC ESM 2007, Cluj-Napoca, Romania Giant Magneto Impedance and Applications a) Introduction.- What is Magnetoimpedance?, its origin? General


  1. Giant Magneto Impedance and Applications M. Vazquez Instituto de Ciencia de Materiales de Madrid, CSIC ESM 2007, Cluj-Napoca, Romania

  2. Giant Magneto Impedance and Applications a) Introduction.- What is Magnetoimpedance?, its origin? General Definitions b) GMI and Magnetization Process.- Materials; Magnetic Anisotropy; “Single Peak” and “Double Peak” behavior, Stress-impedance c) Advances in GMI : New soft materials; Developping sensors based in GMI References - “Giant Magnetoimpedance in soft magnetic wires”, M. Vázquez, J. Magn. Magn. Mat. 226-230 (2001) 693-699. - "Giant Magnetoimpedance", M. Knobel, M. Vázquez y L. Kraus Handbook. Handbook of Magnetic Materials, ed. K.H. Buschow, Vol. 15. Chap. 5, pp. 1-69, Elsevier Science B.V. 2003. - " Giant Magnetoimpedance: Concepts and Recent Progress", M. Knobel y K.L. Pirota, J. Magn. Magn. Mat. 242-245 (2002) 33-39. - "Soft Magnetic Wires", M. Vázquez, Physica B 299 (2001) 302-313. - " Giant Magnetoimepdance as a tool to measure properties of materials", M. Knobel, J. Phys. IV France 8 (1998) Pr 213-218. - "Giant Magnetoimpedance effect in soft amorphous and nanocrystalline ribbons", ML Sánchez, VM Prida, B. Hernando, M. Tejedor and M. Vázquez, Recent. Res. Devel. Magnetics 3 (2002) 191-201. - “Hysteretic behaviour and Anisotropy fields in the magneto-impedance effect”, M. Vázquez, J.P. Sinnecker and G. Kurlyandskaya, Materials Science Forum 302-303 (1999) 209-218. - "Giant magnetoimpedance effect in soft magnetic wires for sensor applications", M.Vázquez, M.Knobel, M.L.Sánchez, R.Valenzuela and A.P.Zhukov, Sensors and Actuators A59 (1997) 20-29. - “International Workshop on Magnetic Wires” San Sebastián 2001. J. Magn. Magn. Mat. Vol. 249 (2002) (whole issue) - Magnetic Sensors and Magnetometers, P. Ripka and L. Kraus ed. Artech House, 2001, pp 349-367 - Kamruzzaman Md., I.Z. Rahman, J. Mater Proc Techn. 119 (2001) 312 - M. Knobel and K. Pirota, J. Magn. Magn. Mater 242-245 (2002) 33 ESM 2007, Cluj-Napoca, Romania

  3. Giant Magneto Impedance and Applications Soft Materials : Ribbons, Wires and Microwires for sensors RF heating coil rotating copper wheel as quenched ribbon Amorphous wire 20- melt spinning Process ≈ 1 mm 100 µ m (Unitika) Microwire CoFeNi(SiB) glass coated Rotating wheel : Water Cooled Microwires : Amorphous (Fe or Co based) Amorphous (Fe or Co based), Nanocristalline Classical Wire drawing : Cristalline NiFe mumetal ESM 2007, Cluj-Napoca, Romania

  4. Soft amorphopus wires obtined by rapid solidification techniques Composition: FeSiB ( λ λ λ λ s ≈ ≈ ≈ ≈ +3x10 -5 ), CoFeSiB ( λ λ s ≈ ≈ -1x10 -7 ) λ λ ≈ ≈ CoSiB ( λ λ λ s ≈ λ ≈ ≈ -2x10 -6 ) ≈ Glass-coated microwires: Fabrication by rapid solidificatio (10 6 K/s) Metallic ferromagnetic nucleus (0.6-30 micron diameter) Pyrex coating( 2-20 micron thick) Continuous Production (400 m/min, 1 kg-40.000 km) Amorphous wire FeSiB 5 micron Amorphous wire obtained by (positive and large magnetostriction) rapid solidification into rotating water: ∼ ∼ 100 µ µ m ∼ ∼ µ µ 0.0015 0.0010 diameter 1,00 0.0005 0,75 M (E.M .U .) 0,50 0.0000 0,25 µ 0 M (T) 0,00 -0.0005 -0,25 -0,50 -0.0010 -0,75 -1,00 -0.0015 -0 ,2 -0,1 0,0 0,1 0,2 -250 -200 -150 -100 -50 0 50 100 150 200 250 H (Oe ) H (A/m) Amorfo wire, FeSiB, 10 cm in length 120 µ µ m diámeter µ µ Glass-coated microwire FeSiBC, Magnetization process by a coated by Pyrex, 2 mm in length 10 µ µ µ m diameter µ single Barkhausen jump

  5. Under which conditions a wire is magnetically ultrasoft? Easy to remagnetize Low magnetic anisotropies Minimum Magnetocrystalline anisotropy ⇔ Amorphous or nanocrystalline structure Mínimum Magnetoelastic Anisotropy, E melas ≈ ( λ s σ ) ⇔ Non-magnetostrictive, Mínimum stresses Non-magnetostrictive Amorphous Wire Alloy Composition: (Co 94 Fe 6 ) 75 Si 15 B 10 Magnetostriction: -1x10 -7 Domain structure Circular Axial Hysteresis Loops: Coercivity ∼ ∼ ∼ mOe !! ∼

  6. What is Magnetoimpedance? It consists of the large modificatio of Impedance (real and imaginary components) of a magnetic conductor magnético at the presence of changing static magnetic field High field Sensitivity ≈ ≈ ≈ ≈ 500% /Oe Low static magnetic field H max ≈ ≈ ≈ ≈ 1-10 Oe Observed in soft Magnetic Materials

  7. GMI phenomenology 160 140 R GMI definition X 120 | Z | Z(H)   /R dc ∆ Z / Z (%)   200 3.0 f = 500 KHz 150 100 (Fe 0.06 Co 0.94 ) 72.5 Si 12.5 B 15 100 [Ohms] I = 1 mA 80 ∆ Z/Z(%)=[Z(H)-Z(H max )]/Z(H max ) ∆ 50 ∆ ∆ 2.5 0 60 Applied stress -8 -4 0 4 8 H (kAm -1 ) σ = 133 MPa 40 | Z |/ R dc 2.0 20 0 1.5 -8 -4 0 4 8 H (kAm -1 ) 1.0 Variation of real and imaginary Components of -8 -4 0 4 8 Impedance Z=R+i ω ω ω X ω H (kAm -1 ) Different Behavior: “Single Peak” y “Double Peak” 5 400 f = 500 KHz ∆ Z / Z % 300 (Fe 0.06 Co 0.94 ) 72.5 Si 12.5 B 15 I ac = 1 mA 4 200 100 Without applied stress 0 | Z |/ R dc 3 -8 -4 0 4 8 H (kAm -1 ) 2 1 -8 -4 0 4 8 H (kAm -1 ) Dependence on exciting frequency Amorphous CoFeSiB wire

  8. Families of Materials exhibiting GMI First Publications: Harrison et al. Nature (1935), Makhotin et al. Sensors and Actuators (1991), Mohri et al. IEEE Trans. Magn. (1993), Machado et al. J. Appl. Phys. (1993), Mandal & Ghatak Phys. Rev.B (1993), Velázquez et al. Phys. Rev. B (1994) Rediscovering GMI in Amorphous Wires : Panina & Mohri, Appl. Phys. Letter (1994), Beach & Berkowitz, Appl. Phys. Letter (1994) Large number of initial publications in other materials during the 90’s: Amorphous ribbons (Machado et al., Sommer & Chien, Tejedor et al.) Nanocrystalline alloys (Knobel et al., Chen et al.) Thin films (Panina & Mohri, Sommer & Chien) Sandwichs Metal/Insulating (Morikawa et al., Antonov et al.) FeSi (Carara& Sommer) Permalloy fibers (Ciureanu et al., Vázquez et al.) Mumetal (Nie et al.) Electroplated microtubes (Beach & Berkowitz, Sinnecker et al.) Amorphous microwires (Vázquez et al., Chiriac et al., Zhukov et al.)

  9. Impedance and skin effect δ << a δ ℓ 2 π a Z ≈ R ≈ ρ ℓ / (2 π a δ ) ≈ f 1/2 µ 1/2 ℓ The skin effect is very intense in amorphous alloys owing to their high permeability and resistivity φ min ≈ 0.5 µ m

  10. Origin of GMI: the skin effect (a problem: the non-linearity of permeability) The static field, H dc , reduces the circular permeability, µ µ φ µ µ φ φ φ , and increases the skin effect penetration depth, δ δ , so reducing the δ δ impedance, Z Dificulties for quantitative estimation of δ : in ferromagnetic materials permeability, µ φ , is not linear function First approximation: taking < µ φ > Introducing the magnetization process in the skin effect: i) Radial profile of internal stresses ( K m.elást ) and magnetic hystory ( K ind ) ii) Influence of the amplitude ( I ac ) and frequency ( f ) of current or circular field ( H φ )

  11. Determining experimentally GMI = + = + ω U U iU R I i L I ac R L dc ac i ac = = + ω U f<< ( no skin ac Z R i L effect) dc i I ac Magnetoinductive effect ( ) ( ) ∫ ∫ e S dz j S dz z z = = = ρ U ac L L Z ∫∫ ∫∫ I j dq j dq ac z z q q ( ) ( ) = ζ × ˆ e S n h S t t = ζ − ζ   L h φ z   Z Impedance tensor zz z φ   l h  

  12. Careful with the measuring process!: Is there too many cables? Measuring through the four points technique V Z = Eliminating parasitic resistence but not V capacities/autoinduction of cables Muestra I I Low frequency: High frequency: analysis resonance with parasitic though transmission capacitance lines: stationary waves Impedance network (maxima and mínima in analyser: authomatic 1400 0 m voltage) 1 m cancelling of parasitic 1200 2 m impedances 1000 4 m GMI (%) 800 3000 1400 0 m 600 GMI-Z 2500 1 m 1200 GMI-R 400 2 m 2000 1000 GMI (%) 4 m 200 GMI (%) 800 1500 0 600 1000 0 2 4 6 8 400 f (MHz) 500 200 C (pF) (line Experimental Theoretical 0 0 length) Frequency (MHz) Frequency (MHz) 0 5 10 15 20 25 30 0 10 20 30 100 (0 m) 4 5.0 f (MHz) f (MHz) 200 (1 m) 3 3.5 300 (2 m) 2.5 2.9 500 (4 m) 2 2.2 1600 (15 m) 1 1.2

  13. Longitudinal Magnetic Anisotropy: “Single-Peak” like GMI Magnetization process by rotation Under the circular alternating field magnetization rotates around the axial direction Correlatio between GMI and magnetization process Z( Ω Ω Ω Ω ) H dc (Oe) f =3.7 MHz Fine structure of double peak: irreversible magnetization process

  14. Circular Magnetic Anisotropy: “Double Peak” like GMI µ = µ + µ H dc Magnetization φ φ φ ∆ Z / Z (%) 200 3.0 f = 500 KHz rot dw Rotation 150 (Fe 0.06 Co 0.94 ) 72.5 Si 12.5 B 15 100 I = 1 mA 50 2.5 0 Applied stress -8 -4 0 4 8 H (kAm -1 ) σ = 133 MPa dc 2.0 | Z |/ R Circular Anisotropy, H k 1.5 1.0 -8 -4 0 4 8 H (kAm -1 ) H ac (circ)<H k <H dc (long) Wall bending µ µ µ µ t and GMI maxima at H dc =H k Applied static field, H dc , tries to overcome intrinsic circular anisotropy, H k Transverse anisotropy induced by CoFeSiB amorphous wire after thermal thermal field-annealing (C1,C4) and stress-annealing inducing circular anisotropy stress-annealing (C2,C3) (FeSiBCuNb (correlation GMI & Magnetization Curves) Nanocrystalline)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend