magneto acoustic waves in an asymmetric magnetic slab
play

Magneto-acoustic waves in an asymmetric magnetic slab Progress in - PowerPoint PPT Presentation

Magneto-acoustic waves in an asymmetric magnetic slab Progress in spatial magneto-seismology Matthew Allcock and Robertus Erd elyi Solar magneto-seismology Observations Solar magneto-seismology Wave parameters Observations Equilibrium


  1. Magneto-acoustic waves in an asymmetric magnetic slab Progress in spatial magneto-seismology Matthew Allcock and Robertus Erd´ elyi

  2. Solar magneto-seismology Observations

  3. Solar magneto-seismology Wave parameters Observations Equilibrium parameters

  4. Solar magneto-seismology Wave Temporal parameters parameters Spatial Observations parameters Equilibrium parameters

  5. Solar magneto-seismology Wave Temporal parameters parameters Spatial Observations parameters Equilibrium parameters Physical understanding

  6. Solar magneto-seismology Wave Temporal parameters parameters Spatial Observations parameters Equilibrium parameters Physical Equilibrium understanding models

  7. Solar magneto-seismology Wave Temporal parameters parameters Spatial Observations parameters Equilibrium parameters Physical Equilibrium Eigenmodes understanding models

  8. Solar magneto-seismology Wave Temporal parameters parameters Spatial Temporal Observations parameters magneto-seismology Equilibrium Spatial parameters magneto-seismology Physical Equilibrium Eigenmodes understanding models

  9. Solar magneto-seismology Wave Temporal parameters parameters Spatial Temporal Observations parameters magneto-seismology Equilibrium Spatial parameters magneto-seismology Physical Equilibrium Eigenmodes understanding models

  10. Solar magneto-seismology Wave Temporal parameters parameters Spatial Temporal Observations parameters magneto-seismology Equilibrium Spatial parameters magneto-seismology Physical Equilibrium Eigenmodes understanding models

  11. Solar magneto-seismology Wave Temporal parameters parameters Spatial Temporal Observations parameters magneto-seismology Equilibrium Spatial parameters magneto-seismology Physical Equilibrium Eigenmodes understanding models

  12. Motivation Max Planck Institute for Solar System Research BBSO/NJIT

  13. Equilibrium conditions ρ 1 , p 1 , T 1 ρ 2 , p 2 , T 2 ρ 0 , p 0 , T 0 z y x 0 x − x 0 Uniform magnetic field in the slab. Field-free plasma outside. Different density and pressure on each side.

  14. Governing equations Ideal MHD equations: Conservation of: ρ D ✈ D t = −∇ p − 1 µ ❇ × ( ∇ × ❇ ) , momentum ∂ρ ∂ t + ∇ · ( ρ ✈ ) = 0 , mass � p � D = 0 , energy D t ρ γ ∂ ❇ ∂ t = ∇ × ( ✈ × ❇ ) , magnetic flux ✈ = plasma velocity, ❇ = magnetic field strength, ρ = density, p = pressure, µ = magnetic permeability, γ = adiabatic index.

  15. Asymmetric slab modes Dispersion relation: ω 4 m 02 k 2 v A 2 − ω 2 + ρ 0 ρ 0 m 2 ( k 2 v A 2 − ω 2 ) m 1 ρ 1 ρ 2 � ρ 0 � − 1 m 1 + ρ 0 2 m 0 ω 2 m 2 (tanh m 0 x 0 + coth m 0 x 0 ) = 0 , ρ 1 ρ 2 m 02 = ( k 2 v A 2 − ω 2 )( k 2 c 2 0 − ω 2 ) ω 2 m 1 , 22 = k 2 − 0 + v A 2 )( k 2 c T 2 − ω 2 ) , c 1 , 22 , ( c 2 c 2 0 v A 2 B 0 c T 2 = v A = 0 + v A 2 , , c 2 √ µρ 0 See Allcock and Erd´ elyi, 2017.

  16. Asymmetric slab modes

  17. Asymmetric slab modes

  18. Asymmetric slab modes

  19. Amplitude ratio ˆ ˆ ξ x ( − x 0 ) ξ x ( x 0 ) x x 0 − x 0 Amplitude ratio ˆ ξ x ( x 0 ) Top = quasi-kink R A := ( Bottom = quasi-sausage ) ˆ ξ x ( − x 0 ) � tanh � ( k 2 v A 2 − ω 2 ) m 1 ρ 1 − ω 2 m 0 ρ 0 ( m 0 x 0 ) � + � ρ 1 m 2 coth � tanh � = ( k 2 v A 2 − ω 2 ) m 2 ρ 2 − ω 2 m 0 − ρ 2 m 1 ρ 0 ( m 0 x 0 ) coth

  20. Minimum perturbation shift x x x 0 x 0 − x 0 − x 0 � � ξ x ξ x ∆ min ∆ min x 0 x x 0 x − x 0 − x 0

  21. Minimum perturbation shift x x x 0 x 0 − x 0 − x 0 Quasi-kink: Quasi-sausage: � 1 � ∆ min = 1 ∆ min = 1 tanh − 1 ( D ) tanh − 1 m 0 m 0 D ( k 2 v A 2 − ω 2 ) m 2 ρ 2 tanh( m 0 x 0 ) − ω 2 m 0 ρ 0 where D = ( k 2 v A 2 − ω 2 ) m 2 ρ 2 − ω 2 m 0 tanh( m 0 x 0 ) ρ 0

  22. Solar magneto-seismology Parameter inversion Observe : ω , k , x 0 , T i , and R A or ∆ min . Solve to find: v A and hence B 0 .

  23. Further work Generalise the model to a variety of structures: ρ 1 , p 1 , T 1 ρ 2 , p 2 , T 2 ρ 0 , p 0 , T 0 z y x 0 x − x 0

  24. Further work Generalise the model to a variety of structures: Add magnetic field outside the slab - coronal structures. See Zs´ amberger and Erd´ elyi , published soon. ρ 1 , p 1 , T 1 ρ 2 , p 2 , T 2 ρ 0 , p 0 , T 0 z y x 0 x − x 0

  25. Further work Generalise the model to a variety of structures: Add magnetic field outside the slab - coronal structures. See Zs´ amberger and Erd´ elyi , published soon. Add steady flow - dynamic structures e.g. solar wind. See Mihai Barbulescu ’s poster. U 0 ρ 1 , p 1 , T 1 ρ 2 , p 2 , T 2 ρ 0 , p 0 , T 0 z y x 0 x − x 0

  26. Future work Apply to observations of MHD waves in, for example: Elongated magnetic bright points , Adaptation of Liu et al., 2017, by N. Zs´ amberger

  27. Future work Apply to observations of MHD waves in, for example: Elongated magnetic bright points , Prominences , NASA

  28. Future work Apply to observations of MHD waves in, for example: Elongated magnetic bright points , Prominences , Sunspot light walls . Max Planck Institute for Solar System Research

  29. ”a day without the Sun is, you know, night” matthew allcock

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend