magneto acoustic waves in asymmetric solar waveguides
play

Magneto-acoustic waves in asymmetric solar waveguides Progress in - PowerPoint PPT Presentation

Magneto-acoustic waves in asymmetric solar waveguides Progress in spatial magneto-seismology Matthew Allcock and Robertus Erd elyi The layers of an onion Magnetohydrodynamic waves Ubiquitous in the solar atmosphere Credit: NASA, SDO


  1. Magneto-acoustic waves in asymmetric solar waveguides Progress in spatial magneto-seismology Matthew Allcock and Robertus Erd´ elyi

  2. The layers of an onion

  3. Magnetohydrodynamic waves Ubiquitous in the solar atmosphere Credit: NASA, SDO

  4. Magnetohydrodynamic waves Diagnosing information about solar plasma Observations

  5. Magnetohydrodynamic waves Diagnosing information about solar plasma Wave parameters Observations Equilibrium parameters

  6. Magnetohydrodynamic waves Diagnosing information about solar plasma Wave Temporal parameters parameters Spatial Observations parameters Equilibrium parameters

  7. Magnetohydrodynamic waves Diagnosing information about solar plasma Wave Temporal parameters parameters Spatial Observations parameters Equilibrium parameters Physical understanding

  8. Magnetohydrodynamic waves Diagnosing information about solar plasma Wave Temporal parameters parameters Spatial Observations parameters Equilibrium parameters Physical Equilibrium understanding models

  9. Magnetohydrodynamic waves Diagnosing information about solar plasma Wave Temporal parameters parameters Spatial Observations parameters Equilibrium parameters Physical Equilibrium Eigenmodes understanding models

  10. Magnetohydrodynamic waves Diagnosing information about solar plasma Wave Temporal parameters parameters Spatial Temporal Observations parameters magneto-seismology Equilibrium Spatial parameters magneto-seismology Physical Equilibrium Eigenmodes understanding models

  11. Magnetohydrodynamic waves Diagnosing information about solar plasma Wave Temporal parameters parameters Spatial Temporal Observations parameters magneto-seismology Equilibrium Spatial parameters magneto-seismology Physical Equilibrium Eigenmodes understanding models

  12. Magnetohydrodynamic waves Diagnosing information about solar plasma Wave Temporal parameters parameters Spatial Temporal Observations parameters magneto-seismology Equilibrium Spatial parameters magneto-seismology Physical Equilibrium Eigenmodes understanding models

  13. Magnetohydrodynamic waves Diagnosing information about solar plasma Wave Temporal parameters parameters Spatial Temporal Observations parameters magneto-seismology Equilibrium Spatial parameters magneto-seismology Physical Equilibrium Eigenmodes understanding models

  14. Slab structures on the Sun Max Planck Institute for Solar System Research BBSO/NJIT

  15. Equilibrium conditions ρ 1 , p 1 , T 1 ρ 2 , p 2 , T 2 ρ 0 , p 0 , T 0 z y x 0 x − x 0 Uniform magnetic field in the slab. Field-free plasma outside. Different density and pressure on each side.

  16. Governing equations Ideal MHD equations: Conservation of: ρ D ✈ D t = −∇ p − 1 µ ❇ × ( ∇ × ❇ ) , momentum ∂ρ ∂ t + ∇ · ( ρ ✈ ) = 0 , mass � p � D = 0 , energy D t ρ γ ∂ ❇ ∂ t = ∇ × ( ✈ × ❇ ) , magnetic flux ✈ = plasma velocity, ❇ = magnetic field strength, ρ = density, p = pressure, µ = magnetic permeability, γ = adiabatic index.

  17. Governing equations Ideal MHD equations: Conservation of: ρ D ✈ D t = −∇ p − 1 µ ❇ × ( ∇ × ❇ ) , momentum ∂ρ ∂ t + ∇ · ( ρ ✈ ) = 0 , mass � p � D = 0 , energy D t ρ γ ∂ ❇ ∂ t = ∇ × ( ✈ × ❇ ) , magnetic flux ✈ = plasma velocity, ❇ = magnetic field strength, ρ = density, p = pressure, µ = magnetic permeability, γ = adiabatic index.

  18. Asymmetric slab modes Dispersion relation: ω 4 m 02 k 2 v A 2 − ω 2 + ρ 0 ρ 0 m 2 ( k 2 v A 2 − ω 2 ) m 1 ρ 1 ρ 2 � ρ 0 � − 1 m 1 + ρ 0 2 m 0 ω 2 m 2 (tanh m 0 x 0 + coth m 0 x 0 ) = 0 , ρ 1 ρ 2 m 02 = ( k 2 v A 2 − ω 2 )( k 2 c 2 0 − ω 2 ) ω 2 m 1 , 22 = k 2 − 0 + v A 2 )( k 2 c T 2 − ω 2 ) , c 1 , 22 , ( c 2 c 2 0 v A 2 B 0 c T 2 = v A = 0 + v A 2 , , c 2 √ µρ 0 See Allcock and Erd´ elyi, 2017.

  19. Asymmetric slab modes Dispersion relation: ω 4 m 02 k 2 v A 2 − ω 2 + ρ 0 ρ 0 m 2 ( k 2 v A 2 − ω 2 ) m 1 ρ 1 ρ 2 � ρ 0 � − 1 m 1 + ρ 0 2 m 0 ω 2 m 2 (tanh m 0 x 0 + coth m 0 x 0 ) = 0 , ρ 1 ρ 2 m 02 = ( k 2 v A 2 − ω 2 )( k 2 c 2 0 − ω 2 ) ω 2 m 1 , 22 = k 2 − 0 + v A 2 )( k 2 c T 2 − ω 2 ) , c 1 , 22 , ( c 2 c 2 0 v A 2 B 0 c T 2 = v A = 0 + v A 2 , , c 2 √ µρ 0 See Allcock and Erd´ elyi, 2017.

  20. Slab eigenmodes Symmetric kink surface mode

  21. Slab eigenmodes Quasi-kink surface mode

  22. Slab eigenmodes Symmetric sausage surface mode

  23. Slab eigenmodes Quasi-sausage surface mode

  24. Slab eigenmodes Body modes

  25. Amplitude ratio ˆ ˆ ξ x ( − x 0 ) ξ x ( x 0 ) x x 0 − x 0 Amplitude ratio ˆ ξ x ( x 0 ) Top = quasi-kink R A := ( Bottom = quasi-sausage ) ˆ ξ x ( − x 0 ) � tanh � ( k 2 v A 2 − ω 2 ) m 1 ρ 1 − ω 2 m 0 ρ 0 ( m 0 x 0 ) � + � ρ 1 m 2 coth � tanh � = ( k 2 v A 2 − ω 2 ) m 2 ρ 2 − ω 2 m 0 − ρ 2 m 1 ρ 0 ( m 0 x 0 ) coth

  26. Minimum perturbation shift x x x 0 x 0 − x 0 − x 0 � � ξ x ξ x ∆ min ∆ min x 0 x x 0 x − x 0 − x 0

  27. Minimum perturbation shift x x x 0 x 0 − x 0 − x 0 Quasi-kink: Quasi-sausage: � 1 � ∆ min = 1 ∆ min = 1 tanh − 1 ( D ) tanh − 1 m 0 m 0 D ( k 2 v A 2 − ω 2 ) m 2 ρ 2 tanh( m 0 x 0 ) − ω 2 m 0 ρ 0 where D = ( k 2 v A 2 − ω 2 ) m 2 ρ 2 − ω 2 m 0 tanh( m 0 x 0 ) ρ 0

  28. Solar magneto-seismology Parameter inversion Observe : ω , k , x 0 , T i , and R A or ∆ min . Solve to find: v A and hence B 0 .

  29. Solar magneto-seismology Parameter inversion Observe : ω , k , x 0 , T i , and R A or ∆ min . Solve to find: v A and hence B 0 .

  30. Future work Diagnose magnetic field parameters using observations of MHD waves in magnetic structures in the solar atmosphere, for example: Elongated magnetic bright points , Adaptation of Liu et al., 2017, by N. Zs´ amberger

  31. Future work Diagnose magnetic field parameters using observations of MHD waves in magnetic structures in the solar atmosphere, for example: Elongated magnetic bright points , Prominences , NASA

  32. Future work Diagnose magnetic field parameters using observations of MHD waves in magnetic structures in the solar atmosphere, for example: Elongated magnetic bright points , Prominences , Sunspot light walls . Max Planck Institute for Solar System Research

  33. matthew allcock

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend