the giant challenges in our understanding of giant planet
play

The giant challenges in our understanding of giant planet internal - PowerPoint PPT Presentation

The giant challenges in our understanding of giant planet internal structures Nadine Nettelmann (U Rostock) acknowledgements: R. Redmer, M. French, M. Bethkenhagen, A. Becker ( U Rostock ), J.J. Fortney, ( UCSC ), S. Hamel ( LLNL )


  1. The giant challenges in our understanding of giant planet internal structures Nadine Nettelmann (U Rostock) acknowledgements: R. Redmer, M. French, M. Bethkenhagen, A. Becker ( U Rostock ), J.J. Fortney, ( UCSC ), S. Hamel ( LLNL ) Introduction Method of GP internal structure modeling EGPs: M-R relations & composition estimates Keck Jupiter & Saturn: EOS, standard models, new approaches Sun Uranus & Neptune: ices and ice-rich models M. French / VASP Republic of Kasakhstan Cassini / NASA NASA UCSC OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure models

  2. Introduction 1-100 bar , ~100-1000 K • mostly H-He fluid, mostly H 2 , M-R convective, adiabatic • high pressures ( < ~100 Mbar) M-R • warm (~10 000 K) transition region luminosity, formation theory ~1 Mbar, few 1000 K • non-ideal, dense matter, plasma / conducting, conducting , H + , e - , ionized C,N,O convective, adiabatic ~5 - 50 Mbar, ~5 - 150,000 K <100 Mbar 2 / 37 OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure models

  3. Introduction what do we mean by “internal structure“ ? 1-100 bar , ~100-1000 K • composition (e.g. bulk water content, bulk rock content) fluid, mostly H 2 , convective, adiabatic • size and number of chemically distinct layers (e.g. core) what do we want to know, and why ? transition region • core mass -> formation (!?!) ~1 Mbar, • bulk enrichment -> formation few 1000 K • atmospheric energy balance -> plasma / conducting, fundamental science convective, adiabatic • magnetic dynamo operation -> fundamental science ~5 - 50 Mbar, ~5 - 150,000 K <100 Mbar 3 / 37 OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure models

  4. Outline Method of EGP internal structure modeling EGPs: M-R relations & composition estimates Jupiter & Saturn Uranus & Neptune OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure models

  5. EGP structure: general assumptions s p h o e a t m r • 2 Layer (core + envelope) e • adiabatic interior ∇ ad • radiative atmosphere (BC) • hydrostatic equilibrium 5 / 37 OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure models

  6. general assumptions : adiabatic interior 2D EOS { T, P, ρ (T, P), s(T,P) } -> 1D path { T(P) s , ρ (P) s } at constant entropy s d log T ∇ ≡ T d log P LOW-MASS STARS / BROWN DWARFS 5 ( ~10 ) − thermal convection because of high opacity ∇ −∇ T ad ( ) adiabatic ∇ = ∇ T ad EARTH: thermal convection + thermal diffiusion ( ) ∇ > ∇ T ad T ( F , , , ,..., ) ∇ κ γ η κ tot T (Fe) core -- (Mg,Si,O) mantle boundary: magnetic field ( ) � ∇ ∇ T ad output: internal Temperature – Pressure – Density profile input: (i) entropy (ii) EOS of single components, (ii) composition 6 / 37 OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure models

  7. atmosphere (boundary condition) output: entropy s input: inbound heat flow T eq (T star , obital a) ; outbound heat flow T eff ; model atmosphere (composition, opacities, T eff , ...) atmospheric Pressure – Temperature profiles 0.1 AU 9.5 AU hot / young / (Saturn) weakly irradiated cold / old / strongly irradiated ➢ Fortney, Marley, Barnes 2007 7 / 37 OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure models

  8. general assumptions : 2-Layer structure C , O H He , N , , i S g M adiabatic, Free parameters: convective, homogeneous • core mass (M core ) • envelope Z (Z env ) • composition of Z-material (Z i ) rocks, ices 8 / 37 OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure models

  9. hydrostatic equilibrium dP Gm = − 4 dm 4 r π m 0.... M = p dr 2 1 (4 r ) ρ − = π dm Boundary Conditions: (i) P(M) ~ 0 , (ii) r(0) = 0 input: P- ρ - relation , i.e. EOSs & composition { M core , Z env , Z i } output: R(M) for given ρ (P) -> M-R relations alternative output: bulk Z, i.e. one of { M core , Z env , Z i } for given R(M) 9 / 37 OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure models

  10. Outline Method of GP internal structure modeling EGPs : M-R relations & composition estimates Jupiter & Saturn Uranus & Neptune OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure models

  11. M-R relations for given compositions • Z env = 0 • Z ice = Z rocks = 0.5 • M core = 10...100 M Earth ➢ Fortney, Marley, Barnes 2007 11 / 37 OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure models

  12. EGP composition estimates for observed M p -R p weakly irradiated (Miller &Fortney 2011) (Guillot 2006) (Maciejewski et al 2011) (Deleuil et al 2011) perhaps brown dwarfs Jup (Leconte, Baraffe, Chabrier 2009) 12 / 37 OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure models

  13. results for M z , Z p for weakly irradiated planets M Z ~ 10 M E , Z p ~ 2-10x Z star M z / M Earth ? M Z planet / Z star Z Z = p M planet ? ➢ Miller & Fortney 2011 13 / 37 OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure models

  14. Tidal Love number k 2 breaks the degeneracy Given: M p , R p , . + temperature profile and atmospheric boundary condition The total heavy element content can be determined, but not the core mass or envelope enrichment . He H H He envelope metallicity core Given: M p , R p , and the Love number k 2 . + temperature profile and atmospheric bounday condition Assuming a 2L structure, He H both M core and Z env can be determined. ➢ Kramm et al. (2011), A&A 14 / 37 OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure models

  15. HAT-P13b, the only planet with inferred k 2 M p = 0.85 M J , R p = 1.3 R J , and also k 2 = 0.27-0.38 HAT-P-13b model, similar to Jupiter e t m a He l H s ➢ Kramm, Nettelmann, Fortney et al 2012 ➢ Batygin et al 2009 ➢ Winn et al 2010 15 / 37 OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure models

  16. Observational constraints observational constraints Observable Solar GP Extrasolar GP Mass M p 14.5 – 318 M Earth RV & Transit Radius R p equatorial radius R eq mean R (Transit) Pressure P (R p ) 1 bar 1 mbar T (R p ) 70 - 170 K 500 - 2000 K mean helium mass fraction Y 0.27 (solar) 0.25 - 0.28 atmospheric He mass fraction Y 1 0.27 Y 1 = Y ≤ atmospheric metallicity Z 1 ≥ 2 x solar spectroscopy period of rotation ω ω orbital period (days) ≈ 9 – 17 h gravitational moments J 2n J 2 , J 4 , J 6 - Love number k 2 - k 2 (e, TTV ) age 4.56 Gyr 0.3 – 10 Gyr T eff 60 - 120 K secondary eclipse / imaging 16 / 37 OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure models

  17. Outline Method of GP internal structure modeling EGPs: M-R relations & composition estimates Jupiter & Saturn EOS, standard models, new approaches Uranus & Neptune OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure models

  18. EOS from simulations in comparison with experiments DEUTERIUM [1,2] quasi-isentropic and isothermal compression WATER [3] single & double shock compression M. French / VASP [1] Becker et al 2013 [2] Loubeyre et al 2007 [3] Knudson et al 2012 18 / 37 OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure models

  19. Single shock experiments to probe the H EOS The different H EOS are stiff/compressible at individual pressure levels. Sesame: chem. picture ➢ Los Alamos database SCvHi: chem. picture ➢ Saumon et al. (1995), ApJS H-REOS: simulations ➢ Holst et al. (2008), PRB Experiments: ➢ Knudson & Desjarlais (2009) ➢ Boriskov et al. (2005) ➢ Knudson et al. (2004), PRB ➢ Nellis et al (1983) 19 / 37 OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure models

  20. Jupiter standard models spacetelescope.org Z outer = Z inner (J 2 ) T 1bar =165-170 K ➢ Saumon & Guillot 2004 hydrogen Y atm =0.238 ➢ Militzer, Hubbard et al . 2008 (Y=0.238) OCNSP... 1-10 Mbar, 6-11 000 K m u i l e h Z outer (J 4 ), Z inner (J 2 ) ➢ Chabrier et al 1992 ➢ Guillot 1999 ~40 Mbar, 17-21 000 K ➢ Nettelmann et al 2008,2012, . Becker et al 2014 20 / 37 OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure models

  21. Core mass and outer envelope metallicity of Jupiter models with different EOS The maximum core mass is predicted to be 3 M E (Sesame), 5 M E (SCvHi), and 8 M E (LM-REOS). LM-REOS SCvHi Sesame Ab initio LM-REOS.2 gives Jupiter models in agreement with the measured noble gas abundances, heavy while SCvHi and Sesame EOS element abundance support the values of N,C. (solar units) in the outer envelope ➢ Atreya et al. 2003, PSS ➢ Lodders 2003, ApJ ➢ Saumon & Guillot (2004), ApJ P 1-2 ➢ Fortney & Nettelmann (2010) 21 / 37 OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure models

  22. Expected O/H measurement by Juno (2016) A discrimination of the competing Jupiter models (and EOS) is in reach if the O:H abundance will be measured by Juno. 3--12x solar SCvHi EOS outer envelope metallicity 4--7 Sesame EOS (solar units) < 4.5 NASA LM-REOS.2 22 / 37 OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure models

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend