experimental past and future
play

Experimental Past and Future Nadia Fomin University of Tennessee - PowerPoint PPT Presentation

Short-range NN interactions: Experimental Past and Future Nadia Fomin University of Tennessee April 12 th , 2017 The quick and the correlated : Progress towards understanding short-range NN interactions The quick and the correlated : Progress


  1. Short-range NN interactions: Experimental Past and Future Nadia Fomin University of Tennessee April 12 th , 2017

  2. The quick and the correlated : Progress towards understanding short-range NN interactions

  3. The quick and the correlated : Progress towards understanding short-range NN interactions

  4. Choosing an Appropriate Microscope Electron scattering is a great tool for studying subatomic structure: unlike a proton, it cannot be absorbed by the nucleus resolution varies with momentum transfer, allowing us to probe 1 the entire volume of the nucleus   q

  5. R. Hofstadter Nobel Prize 1961 "for his pioneering studies of electron scattering in atomic nuclei and for his thereby achieved discoveries concerning the structure of the nucleons"

  6. Collisions – Measured Cross sections Number of scattering centers Target flux x F   (   electrons trons of f energy gy E ) dN FN d θ    ' E E d Ω scatt ttered ered      2 2 2 2 Q q q     2 2 2 electrons of energy E’ 2 W M M Q 2 Q  dN x  2 M

  7. Thomas Jefferson National D Lin inacs cs Accelerator Facility El Electr tron n now with an 11 GeV beam Source ce A B C Experi rimenta ental Hall lls

  8. Shielded Detector Hut SOS HMS Hall C at Jefferson Lab Scattering Chamber Beam Line

  9. Hall A at Jefferson Lab

  10. High momentum nucleons - Short Range Correlations 3N SRC 2N SRC Nucleon momentum distribution in 12 C

  11. High momentum tails in A( e,e’p ) • E89-004: Measure of 3 He( e,e’p )d Measured far into high momentum • tail: Cross section is ~5-10x expectation Difficulty culty • High momentum pair can come from SRC (initial state) OR • Final State Interactions (FSI) and Meson Exchange Contributions (MEC) “slow” nucleons “fast” nucleons p p p p

  12. A( e,e’p ) 2 H( e,e’p ) Mainz PRC 78 054001 (2008) E =0.855 GeV θ = 45 o E’=0.657 GeV Q 2 =0.33 GeV 2 x=0.88 Unfortunately: FSI, MECs overwhelm the high momentum nucleons

  13. Past A( e,e’p ) experiments in Hall A

  14. High momentum nucleons - Short Range Correlations 3N SRC 2N SRC Nucleon momentum distribution in 12 C Try inclusive scattering! Select kinematics such that the initial nucleon momentum > k f

  15. ( x >1) x =1 ( x <1) QE Jlab E02-019 JLab, Hall C, 1998 Deuteriu m

  16. High momentum nucleons - Short Range Correlations 3N SRC 2N SRC   QE d      ( , ) ( ) d k dE S k E Arg  ei i ' d dE        2 2 * 2 2 Arg M M p M k  A A 1  2 1 d q  ( , ) F y q        d d ( ) 2 2 Z N ( ) M y q p n     Ok for for A=2 2 ( ) n k kdk | | y Deuterium Fomin et al, PRL 108 108 (2012)

  17. High momentum nucleons - Short Range Correlations 3N SRC 2N SRC Nucleon momentum distribution in 12 C C. Ciofi degli Atti and S. Simula , Phys. Rev. C 53 (1996).

  18. High momentum nucleons - Short Range Correlations 3N SRC 2N SRC Nucleon momentum distribution in 12 C Hig igh momentum entum fro rom SRCs Cs P>k ferm P> rmi Mean n C. Ciofi degli Atti and S. field fie ld Simula , Phys. Rev. C 53 (1996).

  19. Short Range Correlations • To experimentally probe SRCs, must be in the high-momentum region (x>1) • To measure the relative probability of finding a correlation, ratios of heavy to light 1.4<x<2 => 2 nucleon correlation nuclei are taken 2.4<x<3 => 3 nucleon correlation • In the high momentum region, FSIs are thought to be confined to the SRCs and therefore, cancel in the cross section ratios • L. L. Frankfurt and M. I. Strikman, Phys. Rept. 76, 215(1981). • J. Arrington, D. Higinbotham, G. Rosner, and A 1 M. Sargsian (2011), arXiv:1104.1196     2 2 ( , ) ( ) ( , ) x Q A a A x Q • L. L. Frankfurt, M. I. Strikman, D. B. Day, and j j M. Sargsian, Phys. Rev. C 48, 2451 (1993). j  1 • L. L. Frankfurt and M. I. Strikman, Phys. j Rept. 160, 235 (1988). A • C. C. degli Atti and S. Simula, Phys. Lett. B    2 ( ) ( , ) a A x Q 325, 276 (1994). 2 2 2 • C. C. degli Atti and S. Simula, Phys. Rev. C 53, 1689 (1996). A   2  ( ) ( , ) .... a A x Q 2 A  3 3 3 ( ) a 2 A  A D

  20. Before my time 1.4<x<2 => 2 nucleon correlation 2.4<x<3 => 3 nucleon correlation A 1     2 2 ( , ) ( ) ( , ) x Q A a A x Q j j j  1 j A    2 ( ) ( , ) a A x Q 2 2 2 A   2 ( ) ( , ) .... a A x Q 3 3 3

  21. Previous measurements 1.4<x<2 => 2 nucleon correlation 2.4<x<3 => 3 nucleon correlation Egiyan et al, Phys.Rev.C68, 2003 No observation of scaling for Q 2 <1.4 GeV 2

  22. E02-019: 2N correlations in A/D ratios Fomin et al, PRL 108 (2012) <Q 2 >=2.7 GeV 2 Jlab E02-019

  23.      2 2 Test scaling in x and Q 2 2 4 q M W M       2 1   2 M W   3 He 3 He 12 C 12 C 𝒒 𝒋− α i represents the light cone nuclear momentum fraction carried by the 𝜷 𝒋 = 𝒒 𝑩− /𝑩 constituent nucleon

  24. Look at nuclear dependence of NN SRCs N. Fomin et al, PRL 108 108 (2012) SRC 2 -1 a 2

  25. J.Seely, et al., PRL 103 103, 202301 (2009) Enter 9 Be EM EMC N. Fomin et al, PRL 108 108 (2012) SRC J. Seely, , et al., PRL103, , 202301 (2009) N. Fomin, , et al., PRL 108, , 092052 (2012) 2 -1 JA, A. Daniel, , D. Day, N. Fomin, , D. a 2 Gaske kell, , P. Solvignon non, , PRC RC 86, , 065204 (2012) O. Hen, , et al, PRC RC 85, , 047301 (2012) L. Weinstein, n, et al., PRL 106, , 052301 (2011)

  26. Discovery of the EMC effect • Goal was a measurement of the lepton-nucleon cross section at high Q 2 e - • To achieve statistical precision in a e - reasonable amount of time, an iron target was used, on the assumption that DIS  / A A  W 2 ≥( M n +M π ) 2 1  / 2 D M* A-1 meaning M A   A p n ( ) ( ) ( ) F x ZF x NF x 2 2 2 1      2 ( ) [ ( ) ( )] F x e q x q x 1 i i i 2 1  ( ) ( ) F x F x 1 2 2 x

  27. The EMC effect   A p n ( ) ( ) ( ) F x ZF x NF x 2 2 2 Nuclear dependence of the structure functions discovered 30+ years ago by the European Muon Collaboration (EMC effect) Nucleon structure functions are modified by the nuclear medium Depletion of high-x quarks for Shado dowing wing A>2 nuclei is not expected or EMC region understood Anti-Shado Shadowi wing ng Fermi mi mot otion on effec fects ts (pion n exc xces ess) s)

  28. Measurements before 2004 • NMC – extraction of F 2 n /F /F 2 p DMS -- 50 < Q 2 < 200 (GeV 2 ) • BCDM • HERMES – first measurement on 3 He • SLAC E139 – most precise large x data • Q 2 independent • Universal shape • Magnitude approximately scales with density

  29. Models of the EMC effect Nucleo eon n structur ure e is modified ied in the nuclear medium • Dynamical rescaling • Nucleon ‘swelling’ • Multiquark clusters (6q, 9q ‘bags’) or or Nuclea ear r structur ure e is modified ified due to hadronic effects • More detailed binding calculations • Fermi motion + binding • N-N correlations • Nuclear pions

  30. Nuclear Dependence of the EMC effect  Quark distributions are modified in nuclei  Modification scales with A 4 He ratio evaluated at x=0.6 4 He ratio evaluated at x=0.6

  31. Jlab E03-103 2 H 3 He 4 He 9 Be 12 C 27 Al* 63 Cu 197 Au

  32. Precision results on light nuclei from JLab E03-103 • C/D C/D and 4 He/D /D ratios – no isoscalar correction necessary • Consistent with SLAC results, but much higher precision at high x • Fit the slope of the ratios for 0.35<x<0.7: dR EMC dx • Compare across nuclei PhD theses: J. Seely, A. Daniel J.Seely, A. Daniel, et al., PRL103, 202301 (2009)

  33. J.Seely, et al., PRL 103 103, 202301 (2009) Enter 9 Be EM EMC N. Fomin et al, PRL 108 108 (2012) SRC J. Seely, , et al., PRL103, , 202301 (2009) N. Fomin, , et al., PRL 108, , 092052 (2012) 2 -1 JA, A. Daniel, , D. Day, N. Fomin, , D. a 2 Gaske kell, , P. Solvignon non, , PRC RC 86, , 065204 (2012) O. Hen, , et al, PRC RC 85, , 047301 (2012) L. Weinstein, n, et al., PRL 106, , 052301 (2011)

  34. 2N knockout experiments establish NP dominance R. Sube R. bedi di et et al. l., Science e • Knockout high-initial- 320, , 1476 (2008) momentum proton, look for correlated nucleon partner. • For 300 < P miss < 600 MeV/c all nucleons are part of 2N-SRC pairs: 90% np, 5% pp (nn) R. Shneor et al., PRL 99, 072501 (2007)

  35. 2N knockout experiments establish NP dominance R. R. Sube bedi di et et al. l., Science e 320, , 1476 (2008) 96 ± 23 % 9.5 ± 2 % R. Shneor et al., PRL 99, 072501 (2007)

  36. NP dominance R. Sube bedi di et et al. l., Science e 96 ± 23 320, , 1476 (2008) % R. Shneor et al., 9.5 ± 2 % PRL 99, 072501 (2007) also  Ciofi and Alvioli PRL 100, 162503 (2008)  Sargsian, Abrahamyan, Strikman, Frankfurt PR C71 044615 (2005)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend