generating 3d fruit maps for model based assessment of
play

GENERATING 3D FRUIT MAPS FOR MODEL-BASED ASSESSMENT OF - PowerPoint PPT Presentation

GENERATING 3D FRUIT MAPS FOR MODEL-BASED ASSESSMENT OF ROBOTIC FRUIT HARVESTING EFFICIENCY Stavros G. Vougioukas May 21, 2014 Motivation 3 Question No. 1 4 Can we build


  1. GENERATING ¡3D ¡FRUIT ¡MAPS ¡FOR ¡ � ¡MODEL-­‑BASED ¡ASSESSMENT ¡OF ¡ROBOTIC ¡ ¡ FRUIT ¡HARVESTING ¡EFFICIENCY ¡ Stavros G. Vougioukas May 21, 2014

  2. Motivation 3

  3. Question No. 1 4 ¨ Can we build cost-effective fruit harvesting machines for existing tree architectures?

  4. Question No. 2 ¡ 5 ¨ How much do different training systems affect mechanized harvesting efficiency? ¡

  5. Work-cell automation ¡ 6 STEP 1 STEP 2

  6. Orchard harvest mechanization ¡ 7 ¨ Directly to Step 2 : Design, build, evaluate… 1968 2008

  7. Orchard harvest mechanization 8 ¨ Directly to Step 2 : Design, build, evaluate… 1985 2012

  8. Limitations of existing approach ¡ 9 ¨ Development cycle : (Re)design, build, evaluate ¡ ¤ Since early on, the cycle relies on field testing ¤ Costly & slow (~1 cycle/year). ¤ Funding eventually runs out… ¡ Re-design Build ¡ Experiment ¡ platform ¡ Evaluate ¡

  9. …more limitations ¡ 10 ¨ Experimental evaluations are not readily transferable: ¡ Machines Training systems & orchard layouts

  10. Model-based design ¡ 11 Re-design Re-design ¡ Build ¡ Experiment ¡ Machine & orchard ¡ Evaluate ¡

  11. ‘Digital harvesting’ ¡ 12 Tree training system & orchard layout Design tool ¡ ¡ ¡ 3D fruit distributions ¡ Worker/robot kinematics Machine kinematics

  12. Estimate 3D fruit distributions 13 φ ρ ϕ f ( , , ) h h ρ

  13. Measuring fruit locations on trees ¡ 14 ¨ Very few attempts documented ¤ 1966: Citrus; Schertz & Brown ¤ 2006: Citrus; Lee & Rosa n String & plumb bob ¤ 1991: Citrus; Edan et al. n Manipulator & inverse kinematics ¤ 1994: Kiwi; Smith et al. n Surveying with theodolite ¨ Measurement rates < 1fruit/minute. ¡

  14. New approach ¡ 15 ¨ Track picker’s hand position when fruit is grasped using ranging devices & trilaterate ¨ RCM400 from TimeDomain ¤ Center frequency: 4.3 GHz; Range: ~ 125 m (410 ft).

  15. Methodology 16 16 ( ) 4 ( ) ∑ = − − + − + − * * * ˆ 2 2 2 2 ( x , y z , ) argmin r ( x bx ) ( y by ) ( z bz ) j j j ij j i j i j i x , y , z = i 1 j j j

  16. RCM accuracy in free space 17 Range error is < 6.5 cm (95% confidence)

  17. RCM accuracy in foliage 18 Range error is < 9.5 cm (95% confidence)

  18. Trilateration errors 19 ¨ Geometric Dilution of Precision (GDOP). Trailer 95 th percentile (left) and mean (right) error in the fruit picking workspace.

  19. Experimental results 20

  20. Example: Bartlett Pears 21

  21. Open-vase Bartlett pear trees 22

  22. Pear yield distribution 23 Total: 7737 Average: 516 fruits per tree. Standard deviation, σ = 92.6 fruits.

  23. Pear angular distribution 24 ρ H max max ∫ ∫ ϕ = ρ ϕ ρ ≈ α a ( ) f ( , , ) h d dh = ρ = h 0 0 ρ ϕ ≈ α ρ f ( , , ) h f ( , ) h d

  24. Pear radial vs. height distribution 25 (m) ρ f ( , ) h d (m)

  25. Pear height distribution ¡ 26 ρ π 2 = ∫ ∫ max (m) ρ ϕ ρ ϕ H h ( ) f ( , , ) h d d ϕ = ρ = 0 0

  26. Pear radial distribution 27 π H 2 = ∫ ∫ max ρ ρ ϕ ϕ r ( ) f ( , , ) h d dh = = ϕ 0 h 0 (m)

  27. High-density cling-peach trees ¡ 28

  28. High-density cling-peach trees ¡ 29 (ft) (ft)

  29. High-density cling-peach trees 30 Distance of fruits from trunk axis (ft)

  30. High-density cling-peach trees 31 (ft)

  31. Work in progress: Tree digitization and modeling 32

  32. Next steps 33 ¨ Integration of tree models and fruits.

  33. How can we use this? 34 Virtual fruit tree harvesting

  34. Performance analysis and design ¡ 35 ¨ Picking efficiency; ¨ Picking throughput.

  35. Harvesting simulations: Open-vase trees 36 q Robotic picking at high speeds will be difficult ; q Arms with reach of 8-10 ft would be too massive to be fast enough; severe branch interference; q Simulator will explore alternative multi-arm designs.

  36. Harvesting simulations: High-density trees 37 ¨ Robot arms with reach of ~ 3ft can be fast (~ 1 reach-retrieve/s).

  37. Design Issues 38 ¤ Could actuator arrays achieve high picking efficiency and speed? ¤ How many arms (~ $30k/arm)? ¤ What configuration? ¤ What sizes/work envelopes? ¤ How much do branches interfere?

  38. What could the future bring? Machine Physical Virtual Model ¡ Build ¡ design ¡ Machine ¡ machine ¡ Field Testing ¡ Cultivation/ Physical Breeding ¡ training ¡ plants ¡ • Functional-structural plant models.

  39. 40 THANK YOU! ¡ Acknowledgements: ¡ ¡ Ø Co-­‑Pis ¡ o David ¡Slaughter ¡ o Fadi ¡Fathallah ¡ Ø Numerous ¡California ¡growers. ¡ ¡ Ø Farm ¡advisors: ¡ o Rachel ¡Elkins, ¡UCANR ¡Extension, ¡ ¡Lake ¡and ¡Mendocino ¡CounFes ¡ o Roger ¡Duncan, ¡UCANR ¡Extension, ¡Stanislaus ¡County ¡ o Janine ¡Hasey, ¡UC ¡Extension, ¡SuJer ¡& ¡Yuba ¡CounFes ¡ o Chuck ¡Ingels, ¡UCANR ¡Extension, ¡Sacramento ¡County ¡ ¡ Ø Students: ¡ Ø Jason ¡Wong, ¡Farangis ¡Khosro ¡Anjom, ¡Raj ¡Rajkishan. ¡ ¡ svougioukas@ucdavis.edu ¡

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend