front end and adc asic design front end and adc asic
play

Front-End and ADC ASIC Design Front End and ADC ASIC Design Shaorui - PowerPoint PPT Presentation

Front-End and ADC ASIC Design Front End and ADC ASIC Design Shaorui Li, Gianluigi de Geronimo*, Jack Fried, Wenbin Hou, Neena Shaorui Li, Gianluigi de Geronimo , Jack Fried, Wenbin Hou, Neena Nambia*, Emerson Vernon, Krithika Yethiraj, and


  1. Front-End and ADC ASIC Design Front End and ADC ASIC Design Shaorui Li, Gianluigi de Geronimo*, Jack Fried, Wenbin Hou, Neena Shaorui Li, Gianluigi de Geronimo , Jack Fried, Wenbin Hou, Neena Nambia*, Emerson Vernon, Krithika Yethiraj, and Veljko Redeka Instrumentation Division, Brookhaven National Lab

  2. Outline • Introduction of cold front ‐ end (FE) and ADC ASICs for LAr TPC Introduction of cold front end (FE) and ADC ASICs for LAr TPC • CMOS modeling and design for cold electronics • LAr FE ASIC: ‐ Optimizing input MOSFET under power constraint ‐ Crosstalk of Adjacent Channels ‐ Performance of FE ASIC in MicroBooNE Performance of FE ASIC in MicroBooNE • LAr ADC ASIC: ‐ ASIC Feature and operation ‐ Current ‐ mode Domino architecture • CMOS lifetime study for cold electronics ‐ Basics on hot ‐ carrier effects and lifetime B i h t i ff t d lif ti ‐ CMOS lifetime in dc operation: analog front ‐ end ASICs ‐ CMOS lifetime ac operation: logic circuits and FPGAs p g • Further R&D for LAr FE and ADC ASICs 2

  3. • Sense (anode) wires ASIC Specifications from LArTPC: (up to ~ 10m long): ~14-31 kwires/kton dE/dx of 1 MIP: • up to 200 pF/wire 2.1MeV/cm • collecting (Y) • non-collecting (U,V) • charge sensitivity • range ~200 fC • ENC < 1,000 e - • sample/buffer events • ADC 10-12-bit, 1-2 MS/s • digital multiplexing • 128:4 • power constraint • ~ 20 mW /wire (FE+ADc+FPGA) • operation in LAr time First proposed by C. Rubbia, 1977 • > 30 years 3

  4. Cold Electronics voltage regulation (COTS) (< 100mV dropout) front ‐ end ASIC ADC ASIC FPGA (COTS) ~ 5mW/ch. ~ 5mW/ch. ~ 8mW/ch. sensing o e a overall 128:4 8: wires multiplexing 1 x 8 x Parallel work • CMOS lifetime studies front ‐ end cold module serving 128 wires serving 128 wires ~ 2.4 W

  5. Outline • Introduction of Cold Front ‐ End and ADC ASICs for LAr TPC • CMOS modeling and design for cold electronics • LAr FE ASIC: ‐ Noise Sources in Detector Amplifier and ENC Calculation Noise Sources in Detector Amplifier and ENC Calculation ‐ Optimizing input MOSFET under power constraint ‐ Crosstalk of Adjacent Channels ‐ Performance of FE ASIC in MicroBooNE • LAr ADC ASIC: ‐ ASIC Feature and operation ASIC Feature and operation ‐ Current ‐ mode Domino architecture • CMOS lifetime study for cold electronics ‐ Basics on hot ‐ carrier effects and lifetime ‐ CMOS lifetime in dc operation: analog front ‐ end ASICs ‐ CMOS lifetime ac operation: logic circuits and FPGAs CMOS lif ti ti l i i it d FPGA • Further R&D for LAr FE and ADC ASICs 5

  6. CMOS static characteristics vs. T -- I D /V DS & I D /V GS 10 10 MEASURED CMOS018 SIMULATED (foundry parameters) CMOS018 I D vs V DS LN LN RT RT RT RT 8 8 8 6 6 I D [mA] I D [mA] 4 4 4 4 2 2 NMOS, L=0.18µm, W=10µm NMOS, L=0.18µm, W=10µm 0 0 0 0.0 0.3 0.6 0.9 1.2 1.5 1.8 0.0 0.3 0.6 0.9 1.2 1.5 1.8 V DS [V] V DS [V] 1 1 10 10 I D vs V GS CMOS018 CMOS018 g m g m 0 0 10 10 I I D I D I ) mV/dec ( ln(10)nV T ) T V -1 -1 n 10 10 [mA], g m [mS] [mA], g m [mS] ) 0 MEASURED 1 SIMULATED ( n LN l (foundry parameters) ( -2 -2 10 10 c e RT LN d / V RT ~72m ~72m m I D I D ~18mV/dec c ~18mV/dec c -3 3 -3 3 10 10 -4 -4 10 10 NMOS, L=0.18µm, W=10µm NMOS, L=0.18µm, W=10µm -5 -5 10 10 0.0 0.0 0.3 0.3 0.6 0.6 0.9 0.9 1.2 1.2 1.5 1.5 1.8 1.8 0.0 0.0 0.3 0.3 0.6 0.6 0.9 0.9 1.2 1.2 1.5 1.5 1.8 1.8 V GS [V] V GS [V] Some differences in saturation voltage, sub-threshold slope, transconductance 6

  7. CMOS static characteristics vs. T -- g m /I D MEASURED 120 NMOS PMOS T=77K 100 L=360nm g m /I D L=270nm L=180nm 80 -1 ] g m /I D [V NMOS PMOS T=300K 60 L=360nm L=270nm 40 40 L=180nm L 180nm 20 CMOS018 0 0 -6 -5 -4 -3 -2 -1 0 1 2 10 10 10 10 10 10 10 10 10 Drain Current Density [mA/mm]   ~ 30 at T 300 K g g q q    Transconductance/ Transconductance/  m m   I nk T ~116 at T 77 K /drain current D B At 77-89K, charge carrier mobility in silicon increases , thermal fl fluctuations decrease with kT/e , resulting in a higher gain , higher g m /I , t ti d ith kT/ lti i hi h i hi h /I higher speed and lower noise . 7

  8. CMOS Noise Spectral Density vs. T T = 300K T = 77K 3 3 10 10 L=180nm, W=1mm (20µm x 50) L=180nm, W=1mm (20µm x 50) ty [nV/  Hz] ity [nV/  Hz] V DS =400mV, T=300K V DS =400mV, T=77K 2 2 10 10 1/f 1/f NMOS NMOS NMOS spectral densi spectral densi I D =3.2mA (IC=3) I D =3.2mA (IC=1) 1 1 10 10 PMOS PMOS I D =0.7mA (IC=1) I D =0.7mA (IC=0.3) fit curve fit curve Input noise Input noise 0 0 10 10 white white   1/f 1/f CMOS018 CMOS018 -1 -1 10 10 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 1.3nV/Hz 1/2 Frequency [Hz] Frequency [Hz] 0.65nV/Hz 1/2 • White noise at 77K is a factor of 2 lower than at 300K • PMOS • 1/f noise amplitude at 77K is a factor of 2 lower than at 300K • NMOS • comparable 1/f noise amplitude at 300 K and 77K • Lorentzian packet at 77K 8

  9. Outline • Introduction of Cold Front ‐ End and ADC ASICs for LAr TPC • CMOS modeling and design for cold electronics • LAr FE ASIC: ‐ Optimizing input MOSFET under power constraint Optimizing input MOSFET under power constraint ‐ Crosstalk of Adjacent Channels ‐ Performance of FE ASIC in MicroBooNE • LAr ADC ASIC: ‐ ASIC Feature and operation ‐ Current ‐ mode Domino architecture Current mode Domino architecture • CMOS lifetime study for cold electronics ‐ Basics on hot ‐ carrier effects and lifetime ‐ CMOS lifetime in dc operation: analog front ‐ end ASICs ‐ CMOS lifetime ac operation: logic circuits and FPGAs • Further R&D for LAr FE and ADC ASICs F th R&D f LA FE d ADC ASIC 9

  10. Analog Front ‐ End ASIC Analog Front ‐ End ASIC Block Diagram digital digital common register BGR, common bias, temp. sensor interface channel register gain & mode & peaking time & bypass mode test coupling mode 5 mode .7 mm analog wire outputs p dual-stage charge amplifier filter ac/dc 16 channels • 16 channels 6.0 mm • charge amplifier, high-order anti-aliasing • band-gap referenced biasing filter • temperature sensor (~ 3mV/ ° C) • programmable gain: 4.7, 7.8, 14, 25 • 136 registers with digital interface mV/fC • 5 5 mW/channel (input MOSFET 3 9 mW) 5.5 mW/channel (input MOSFET 3.9 mW) (charge 55, 100, 180, 300 fC) • single MOSFET test structures programmable filter • ~ 15,000 MOSFETs (peaking time 0.5, 1, 2, 3 µs) • designed for room and cryogenic operation • programmable collection/non-collection • technology CMOS 0 18 µm 1 8 V technology CMOS 0.18 µm, 1.8 V mode (baseline 200, 800 mV) • programmable dc/ac coupling (100µs) 10

  11. Charge Sensor-Transistor Capacitance Mismatch under power constraint      kT  e C C     2   V 2  n d g gs e e 4 4 kT     ENC ENC     Hz n  g 1 2 m p For a very large low noise PMOS transistor W~10mm, L~250nm, W/L~4x10^4, C gs ~10pF. Area in 180 nm process: 160µm x 50µm=8,000µm 2 , equivalent to ~ 10 3 small transistors. The transistor can not match a large (nanofarad) sensor capacitance and we are left with linear dependence of ENC on detector capacitance:    C 1 3 C For low power, CMOS in weak inversion: gsopt gd e C  n det ENC  1 2 p Layout of Input PMOS in LAr FE ASIC 11

  12. ENC vs. Power in the Input Cascode 4000 PMOS 3500 Total ENC L = 270 nm Whit White C DET =200pF 3000 Low-frequency  PK =1  s ons] T = 87 K 2500 rms electro 2000 1500 1500 ENC [r 1000 500 0 3 6 3.6 10m 10m 100m 100m 1 1 10 10 100 100 Power [mW] 12

  13. ENC in LArASIC vs. peaking time of the anti-aliasing filter at 300K and 90K  White series noise 1800 which is dominant T=300K 1600 at short peaking at short peaking T=77K times decreases 1400 C DET =220pF the most with m.s.) 1200 temperature. temperature. (electrons r.m target at 90K 90K 1000  The remaining 800 measured noise is noise is ENC ( 600 600 dominated by 1/f 400 noise, which is simulated whole front-end independent of the independent of the 200 200 s simulated input MOSFET u ated put OS peaking time . 0 0 1 2 3 Peaking Time (µs) 13

  14. Submersion in Liquid Nitrogen (77K) 14 1 4

  15. Crosstalk Study: Basic Feedback Preamplifier Configuration Note: feedback function per se does not affect ENC (feedback components may add noise) ix1 (See slide 20, 21) Preamp input equivalent circuit equivalent circuit DC Gain: R G f 0 Input resistance: Gain ‐ Bandwidth: 1 C   o o R R =>  C in in C g C h f m f Inductance: 1 st pole: Rise time constant:  R => f h C G f f 0 0 1 C   in A periodic R 2  f C C response for h f f 15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend