from
play

from Dark Matter Annihilation into e - -e + Pairs Maneenate - PowerPoint PPT Presentation

Multi-Messenger Constraints and Pressure from Dark Matter Annihilation into e - -e + Pairs Maneenate Wechakama Kasetsart University, Thailand M. Wechakama 1 Outline Introduction to Dark Matter (DM) The e - and e + excess in the solar


  1. Multi-Messenger Constraints and Pressure from Dark Matter Annihilation into e - -e + Pairs Maneenate Wechakama Kasetsart University, Thailand M. Wechakama 1

  2. Outline • Introduction to Dark Matter (DM) • The e - and e + excess in the solar neighbourhood • Propagation of e - and e + from DM annihilation • Pressure from DM annihilation • Multi-messenger constraints on DM annihilation • Outlook M. Wechakama 2

  3. Outline • Introduction to Dark Matter (DM) • The e - and e + excess in the solar neighbourhood • Propagation of e - and e + from DM annihilation • Pressure from DM annihilation • Multi-messenger constraints on DM annihilation • Outlook M. Wechakama 3

  4. Cosmological Evidences for DM Image credit: http://cdms.phy.queensu.ca/Public_Docs/DM_Intro.html Image credit: Hubble Space Telescope Image credit: S. Gottlöber, G. Yepes, A. Klypin, A. Khalatyan Rotation curves of galaxies Gravitational lensing Large scale structure Total amount of DM Image credit: http://www.nasa.gov/mission_pages/planck/ Planck Collaboration et al. 2013 M. Wechakama, AIP 4

  5. How to detect dark matter? Image credit: http://cdms.berkeley.edu/Education/DMpages/science/directDetection.shtml Image credit: Sky & Telescope / Gregg Dinderman Indirect detection Direct detection M. Wechakama, AIP 5

  6. Outline • Introduction to Dark Matter (DM) • The e - and e + excess in the solar neighbourhood • Propagation of e - and e + from DM annihilation • Pressure from DM annihilation • Multi-messenger constraints on DM annihilation • Outlook M. Wechakama, AIP 6

  7. e - and e + Excess in the Solar Neighbourhood Anti-proton flux Positron fraction e + /(e + + e - ) e + + e - flux Figures from Cirelli 2012 Indirect detection experiments in the solar neighborhood show • an e - and e + excess with respect to the astrophysical background. • no excess in the anti-proton flux. • need an unknown source which produce only e - and e + but not anti-proton!! M. Wechakama, AIP 7

  8. e - and e + Excess in the Solar Neighbourhood Anti-proton flux Positron fraction e + /(e + + e - ) e + + e - flux Figures from Cirelli 2012 • These results can be interpreted in term of DM annihilations. • Red curve: 3 TeV DM particles annihilating into  +  - (Meade et al. 2009) • It might be that the e - and e + in the solar neighbourhood are created by DM annihilation. M. Wechakama, AIP 8

  9. Signatures of DM from e - and e + Wechakama & Ascasibar 2012 • If the e - and e + in the solar neighbourhood originate from DM annihilation, then e - and e + should be created everywhere in the Galactic DM halo. • We can look for astrophysical signatures of DM through e ± . M. Wechakama, AIP 9

  10. Purpose of the Research • Look for signatures of DM annihilation in the Galaxy • local e - and e + spectrum • photons from the Galactic centre • pressure of e - and e + from DM annihilation • Constrain the DM properties • mass • annihilation cross-section • DM density profile M. Wechakama 10

  11. Outline • Introduction to Dark Matter (DM) • The e - and e + excess in the solar neighbourhood • Propagation of e - and e + from DM annihilation • Pressure from DM annihilation • Multi-messenger constraints on DM annihilation • Outlook M. Wechakama 11

  12. - Electron H + - - + H - ɣ + H - H + - + + - H Positron e  lose energy by ISRF, Dark Matter ISM and magnetic fields Dark Matter Halo Dark Matter Halo M. Wechakama 12

  13. Electron and Positron Propagation Diffusion-loss equation       n n n d d d                ( , x ) K x ( , ) ( , x ) b x ( , ) ( , x ) Q x ( , )           t d d d e  Spectrum Diffusion Energy Loss Source is number density of e - and e + n    2 is Lorentz factor ( E m c ) e is the space coordinate x M. Wechakama 13

  14. Diffusion       d n d n d n                ( , x ) K x ( , ) ( , x ) b x ( , ) ( , x ) Q x ( , )           t d d d We use a constant diffusion coefficient from Donato et al. 2004 & Delahaye et al. 2008     K K ( ) 0      25 2 1 K 1.67 10 cm s , 0.7 0 M. Wechakama, AIP 14

  15. Energy Loss       d n d n d n                ( , x ) K x ( , ) ( , x ) b x ( , ) ( , x ) Q x ( , )           t d d d e  - photon • Inverse Compton • Synchrotron e  - thermal electron • Coulomb collisions • Bremsstrahlung e  - hydrogen atom • Ionization M. Wechakama 15

  16. Source       d n d n d n                ( , x ) K x ( , ) ( , x ) b x ( , ) ( , x ) Q x ( , )           t d d d The electrons and positrons are produced from DM annihilation 2    r ( )    dm  Q 0 ( ) r v  e   m dm DM Density DM Annihilation Profile Cross-Section M. Wechakama 16

  17. Dark Matter Density Profile NFW Profile:  =1 Characteristic Density of the DM Halo    s ( ) r    dm 3     r r      1  r   r  s s Inner Logarithmic Characteristic Radius Slope of the DM Halo Navarro, Frenk &White 1997 M. Wechakama 17

  18. Model of e  propagation Assuming steady-state + spherical symmetry      n n d d               0 K (r, ) (r, ) b (r, ) (r, ) Q (r, )         d d d ( , ) n r  The solution of e  spectrum,  d depends on  Diffusion Tell us about the  Energy losses distribution of electrons  Source and positrons from DM annihilation in a DM halo M. Wechakama 18

  19. Model Parameters Galactic properties (energy losses) Canonical Model  g • • Gas density: 1 cm -3 (ref 1.) • Ionization fraction: X ion • 0 (ref 1.) • 6  G Magnetic fields: B • (ref 2.) DM properties (Source term) • Dark matter density profile:  dm • NFW (ref 3.) • Cross-section: <  v > • Constrained by Integral, • Fermi and HESS DM Mass : E 0 = m dm c 2 1. Dehnen & Binney 1998, Ferrière 2001, Robin et al. 2003 2. Ferrière 2001, Beck 2001, Ascasibar & Díaz 2010 3. Dehnen & Binney 1998, Klypin et al. 2002 M. Wechakama 19

  20. Outline • Introduction to Dark Matter (DM) • The e - and e + excess in the solar neighbourhood • Propagation of e - and e + from DM annihilation • Pressure from DM annihilation • Multi-messenger constraints on DM annihilation • Outlook M. Wechakama 20

  21. Dark Matter Pressure Gravity + - - + - + - + e - , e + gas pressure Dark Matter Halo M. Wechakama 21

  22. Dark Matter Pressure      2 2 m c d ( , ) n r 1     e   P ( ) r d   dm   3 d 1 Dark Matter Pressure  e  spectrum M. Wechakama 22

  23. Results: Dark Matter Pressure as a function of • DM particles ( m d m , Q 0 ) • Magnetic fields • Gas density • Ionization fraction • DM density profile Wechakama & Ascasibar MNRAS 2011 M. Wechakama 23

  24. Results: Dark Matter Pressure as a function of • DM particles ( m d m , Q 0 ) • Magnetic fields • Gas density • Ionization fraction • DM density profile Wechakama & Ascasibar MNRAS 2011 M. Wechakama 24

  25. Results: Dark Matter Pressure as a function of • DM particles ( m d m ) • Magnetic fields • Gas density • Ionization fraction • DM density profile Wechakama & Ascasibar MNRAS 2011 M. Wechakama 25

  26. Results: Dark Matter Pressure as a function of • DM particles ( m d m ) • Magnetic fields • Gas density • Ionization fraction • DM density profile Wechakama & Ascasibar MNRAS 2011 M. Wechakama 26

  27. Effect on Rotation Curves of Galaxies Image credit: NOAO, AURA, NSF, T.A.Rector P r r d ( )     dm v ( ) r rg r ( ) rg ( ) r rg ( r )   rot gas d m ( ) r d r g Circular velocity + DM pressure gradient M. Wechakama 27

  28. Effect on the Milky Way Model without DM pressure with DM pressure Wechakama & Ascasibar MNRAS 2011 M. Wechakama 28

  29. Effect on Different DM Profile without DM pressure Wechakama & Ascasibar MNRAS 2011 with DM pressure M. Wechakama 29

  30. Effect on Observed Rotation Curves 14 Low Surface Brightness Galaxies (de Blok & Bosma 2002) M. Wechakama 30

  31. Effect on Observed Rotation Curves Observed Rotation Curve from de Blok&Bosma 2002 M. Wechakama, AIP 31

  32. Effect on Observed Rotation Curves Star & Gas Data from de Blok&Bosma 2002 star gas M. Wechakama, AIP 32

  33. Effect on Observed Rotation Curves Rotation Curve Without DM pressure from de Blok&Bosma 2002 star gas M. Wechakama, AIP 33

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend