from nano to pico
play

From nano to PICO: the next generation of aberration corrected TEMs - PowerPoint PPT Presentation

From nano to PICO: the next generation of aberration corrected TEMs Joachim Mayer RWTH Aachen University and Forschungszentrum Jlich 2.46 Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons Cs-corrected protoype


  1. From nano to PICO: the next generation of aberration corrected TEMs Joachim Mayer RWTH Aachen University and Forschungszentrum Jülich 2.46 Å

  2. Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons

  3. Cs-corrected protoype Cs-corrected Cs/Cc-corr. Rose, Haider, Urban FEI TITAN 80 – 300 (2006) (1998) Three generations of aberration corrected HRTEMs PICO (2011)

  4. m Comparison of Resolution Limits of Optical Instruments mm Hair x µm 100 Light Transistor nm Atom Å x 100 pm Electron wavelength

  5. Spherical Aberration Magnetic Lens Phase-Shift 500 correctors for spherical aberration Gaussian installed worldwide Image Plane

  6. Chromatic Aberration two correctors for chromatic aberration (HRTEM) installed worldwide

  7. Outline • PICO and the correction of chromatic aberration • Low voltage HRTEM • Applications to nanoparticles • Atomic resolution EFTEM 2.46 Å

  8. Aberration corrected electron optics Lens C S = 0 P Image plane  TU Darmstadt (H. Rose)  EMBL Heidelberg (M. Haider)  Forschungszentrum Jülich (K. Urban) Haider, Rose, Urban et al. Nature 392 , 768 (1998) Volkswagen Stiftung

  9. Chromatic Aberration

  10. Correction Principle: Wien Filter E B image plane Harald Rose and Max Haider

  11. Correction Principle: Crossed Electrostatic/Magnetic Quadrupoles Harald Rose and Max Haider

  12. CCOR in Heidelberg, CEOS 828 mm, 470 kg, 160 channels

  13. Chromatic Aberration 1 dE   d C c c 2 E Biggest impact of Cc-correction expected for: • large energy spread dE (EFTEM) • low accelerating voltages (low E)

  14. PICO resolution Sub-Ångstrøm resolution at 80 kV Resolution improvement to 0.8 Å due to C C -correction Few- layer hexagon al boron nitride viewed along c - axis Fourier transform of 0.5 nm Haider et al, Ultramicroscopy C C and C S correct 108 (2008) 167 L. Houben

  15. PICO: atomic resolution at 50 kV Graphene:Pd 9.8 nm -1 1 Å Pd Au/C 9.37 nm -1 2.46 Å inverted positive phase contrast 2 nm Lothar Houben (ER-C) sample courtesy of U.Bangert, University of Manchester

  16. Case study Catalytic Rh-Nanoparticles in Ionic Liquid on Graphene PICO, U = 80 kV J. Barthel (ER-C), M. Marquardt (Univ. Düsseldorf)

  17. Determination of the 3D shape of a nanoscale crystal with atomic resolution from a single image C. L. Jia, S. B. Mi, J. Barthel, D.W.Wang, R. E. Dunin-Borkowski, K.W. Urban and A. Thust, NATURE MATERIALS | VOL 13 | NOVEMBER 2014

  18. Experimental Simulated image image

  19. Determined 3D atomic arrangement and displacements of atoms: atomically resolved view of the best-fitting 3D atomic arrangement for the sample region shown. Red spheres: fully occupied Mg sites and blue spheres: fully occupied O sites. Increased colour saturation is used to highlight surface atoms. In the surface layers, brown spheres indicate formally half-occupied Mg sites, while cyan spheres indicate formally half-occupied O sites.

  20. Energy Filtering TEM vs. STEM-EELS STEM EFTEM Electron energy loss spectrum

  21. Energy Filtering TEM Spherical 3 d   0 0 5 . C s s Aberration Chromatic  1 E c   0 d C Aberration c 2 E 0  Diffraction Limit  0 . 6 d  d  Delocalisation  0 . 5 d del 3 4  E     2 2 2 2 d d d d d tot c s d del

  22. Wide field of view: SrTiO3 <100>, hollow-cone EFTEM Ti L 23 pre-edge 1 pre-edge 2 post-edge Ti-L 23 map Sr-M map (pre-edge)

  23. EFTEM Resolution & Cc-Correction Cs corrected Cs and Cc corrected Cc=1.4 mm Cc=10 μ m W=10 eV W=50 eV Cc optical limit optical limit Delocalisation Delocalisation Diffraction Diffraction Cs Cc Cs -> optical resolution better than delocalisation -> large windows possible As in Krivanek et al, J. Microsc. 180 (1995) 277 R. F. Egerton, J. Electr. Microsc. 48 (1999) 711.

  24. High Resolution EFTEM of Si EFTEM, Si-L edge at 99 eV, energy window 40 eV Pre edge 1 Pre edge 2 Si-L Map Post edge 1.35 Å

  25. • Energy conversion Energy Applications • Catalytic nanoparticles • Photovoltaic cells 28 Marc Heggen, ER-C

  26. Energy conversion strategies PLB „Power -to-Storage “ SOEC „Power -to-Fuel “ SOFC „Fuel -to-Power “ PLB = post lithium batteries SOEC = solid oxide electrolyser cells SOFC = solid oxide fuel cells

  27. Power to Fuel: Hydrogen Production CdSe/CdS hybride particles: use as photo- O 2 catalysts for water separation CdSe: used for charge separation H 2 CdS: larger bandgap, charge transfer properties H 2 How do growth, surface and interface/defects depend on the choice of organic ligands? Lothar Houben, Juri Barthel (ER-C) collaboration with M. Bar Sadan, S. Mangel, Ben Gurion University

  28. Stability of CdSe/CdS NP surfaces at 80 kV Focal series C 1 = -15.6 nm ... 9.6 nm C 5 = +3.5 mm, C 3 = -10.6 μ m PICO: Structural stability is given at 80 kV -> possibility to record focal series for residual aberration correction

  29. Surface coordination and termination Focal series reconstruction Cd S/Se - occurrence of twin boundaries - Cd termination is ligand-stabilized Cd S/Se 1.4 Å

  30. EFTEM of CdSe/CdS Nanoparticles (PICO) y t i s n Characteristic e t n edge I EFTEM  E series  E EFTEM ESI series of CdS/CdSe nanoparticles 80 kV, 35 eV - 235 eV, slit size 20 eV, step 10 eV c Se M 45 a b Se M 45 HRTEM S L 23 , Se M 23 jump ratio 5 nm 5 nm zero loss filtered image Se M 45 , Se M 23 & S L 23 Se M edge jump ratio EFTEM map Lothar Houben in collaboration with M. Bar Sadan, S. Mangel, Ben Gurion University

  31. 21%

  32. BMBF-project SINOVA 21% 60%

  33. Design Concept 2.74 nm Vertical Transport 2.88 nm SiO x Si 2.64 nm 4.90 nm 5.16 nm 2.40 nm Si/SiO 2 -Superlattices: 4.95 nm Fabrication by RPECVD at 250 ° C and Rapid Thermal Annealing at 900 to 1100 ° C Sample: B. Spangenberg, H. Kurz, IHT, RWTH Aachen, TEM: A. Sologubenko, M. Beigmohamadi

  34. Transport Concepts Vertical Transport Lateral Transport

  35. PICO Vertical Transport d am d cryst d am Si/SiO 2 -Superlattices: Fabrication by RPECVD and d cryst Laser annealing Sample: B. Spangenberg, H. Kurz, IHT, RWTH Aachen, TEM: M. Beigmohamadi

  36. PICO: Energy Filtering TEM Si-L edge, 3 window meth. Maryam Beigmohamadi, Jörg Jinschek

  37. T HANK Y OU !

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend