free energy of a particle in high dimensional gaussian
play

Free energy of a particle in high-dimensional Gaussian potentials - PowerPoint PPT Presentation

Free energy of a particle in high-dimensional Gaussian potentials with isotropic increments Anton Klimovsky EURANDOM Eindhoven University of Technology September 1, 2011, Prague http://arxiv.org/abs/1108.5300 Gaussian fields with isotropic


  1. Free energy of a particle in high-dimensional Gaussian potentials with isotropic increments Anton Klimovsky EURANDOM Eindhoven University of Technology September 1, 2011, Prague http://arxiv.org/abs/1108.5300

  2. Gaussian fields with isotropic increments ◮ Gaussian random field : X N = { X N ( u ) : u ∈ ❘ N } . ◮ X N ( u ) centred Gaussian , u ∈ ❘ N . ◮ Isotropic increments : � 1 � ( X N ( u ) − X N ( v )) 2 � N � u − v � 2 = : D N ( � u − v � 2 u , v ∈ ❘ N . � = D 2 ) , ❊ 2 ◮ NB! N ≫ 1 . ◮ Any (admissible) D : ❘ + → ❘ + .

  3. Complete classification of the correlators A.M. Yaglom (1957): 1. Isotropic field: � 1 � N � u − v � 2 ❊ [ X N ( u ) X N ( v )] = B , u , v ∈ Σ N , 2 � + ∞ − t 2 r � � B ( r ) = c 0 + ν ( d t ) , exp 0 c 0 ∈ ❘ + , ν ∈ M finite ( ❘ + ) . D ( r ) = 2 ( B ( 0 ) − B ( r )) . 2. Non-isotropic field with isotropic increments: � + ∞ − t 2 r � � �� D ( r ) = 1 − exp ν ( d t )+ A · r , r ∈ ❘ + , 0 A ∈ ❘ + , ν ∈ M (( 0; + ∞ )) � + ∞ t 2 ν ( d t ) t 2 + 1 < ∞ . 0

  4. A particle subjected to a rugged potential: ◮ Particle state space : √ S N : = { u ∈ ❘ N : � u � 2 ≤ L S N : = S N , S ⊂ ❘ , N } , L > 0 . or ◮ Partition function : √ � � � Z N ( β ) : = µ N ( d u ) exp β NX N ( u ) , β ∈ ❘ + . S N ◮ Log-partition function : p N ( β ) : = 1 N log Z N ( β ) . ◮ Q: N → + ∞ p N ( β ) = : p ( β ) = ? lim

  5. Parisi-type functional ◮ Regularised derivative: � D ′ ( r ) , r ∈ [ 1 / M ; + ∞ ) , D ′ , M ( r ) : = M , r ∈ [ 0;1 / M ) . ◮ Parisi terminal value problem: � qq f ( y , q )+ x ( q )( ∂ y f ( y , q )) 2 � � ∂ q f ( y , q )+ 1 2 D ′ , M ( 2 ( r − q )) ∂ 2 = 0 , f ( y , 1 ) = h ( y ) , q ∈ ( 0 , r ) , y ∈ ❘ . ◮ Spin glass order parameter: x ∈ X ( r ) : = { x : [ 0 , r ] → [ 0 , 1 ] | càdlàg ↑ , x ( 0 ) = 0 , x ( r ) = 1 } . ◮ Boundary conditions (product state space) � β uy + λ u 2 � � h λ ( y ) : = log S µ ( d u ) exp , y ∈ ❘ , λ ∈ ❘ . ◮ Parisi-type functional: � 1 − β 2 � � � f ( M ) � 0 x ( q ) d θ ( M ) P ( β , r )[ x ] : = lim r , x , h λ ( 0 , 0 ) − λ r inf ( q ) , r 2 M ↑ + ∞ λ ∈ ❘ θ ( M ) ( q ) : = − qD ′ , M ( q ) − D ( q ) , q ∈ ❘ + .

  6. Variational formula Effective size of the state space: � � 1 � u � 2 d : = sup N sup . 2 u ∈ S N N Theorem almost surely and in L 1 . p ( β ) : = sup x ∈ X ( r ) P ( β , r )[ x ] , inf r ∈ [ 0; d ]

  7. Heuristics: "localisation" ◮ Covariance structure: ❊ [ X N ( u ) X N ( v )] = 1 � D N ( � u � 2 2 )+ D N ( � v � 2 2 ) − D N ( � u − v � 2 � u , v ∈ ❘ N . 2 ) , 2 ◮ Overlap: N � u , v � N : = 1 u , v ∈ ❘ N . ∑ u i v i , N i = 1 ◮ Fix r ∈ [ 0; d ] : ❊ [ X N ( u ) X N ( v )] = D ( r ) − 1 2 D ( 2 ( r −� u , v � N )) , � u � 2 2 = � v � 2 2 = rN . ◮ ⇒ Localisation.

  8. Particle in a rotationally invariant box ◮ Particle state space: √ S N : = { u ∈ ❘ N : � u � 2 ≤ L N } . ◮ A priori measure: µ N ∈ M finite ( S N ) : � � N d µ N ∑ u = ( u i ) N i = 1 ∈ ❘ N , ( u ) : = exp f ( u i ) , f : ❘ → ❘ , d λ N i = 1 f ( u ) : = h 1 u − h 2 u 2 , h 1 ∈ ❘ , h 2 ∈ ❘ + . ◮ Fyodorov, Sommers (2007): � � q max � r � C S ( β , r )[ x ] : = 1 d q q x ( s ) d s + h 2 log ( r − q max )+ 0 x ( q ) d q − h 2 r � r 1 2 0 � q max + β 2 � � D ′ ( 2 ( r − q max ))+ D ′ ( 2 ( r − q )) x ( q ) d q , 2 0 x ∈ X ( r ) .

  9. A test function

  10. Short range: solution of the variational problem Short range : D ( r ) : = B ( 0 ) − B ( r ) 3 [ D ′′′ ( r )] 2 / 2 − D ′′ ( r ) D ′′′ ( r ) = : S ( r ) > 0 , u ∈ ❘ + , Derrida’s random energy model (REM) behaviour: β ∈ [ 0; β c ) ⇒ RS optimiser β ∈ ( β c ; + ∞ ] ⇒ 1-RSB optimiser

  11. Long range: solution of the variational problem Long range : if D satisfies S ( r ) < 0 , u ∈ ❘ + , Full RSB : β ∈ [ 0; β c ) ⇒ RS optimiser β ∈ ( β c ; + ∞ ] ⇒ FRSB optimiser

  12. Critical range: logarithmic correlations Long range : D satisfies S ( r ) = 0 , u ∈ ❘ + , ◮ D ( r ) = log ( c + r ) , c > 0 ⇒ REM-behaviour (at the level of ❊ ) ◮ D ( r ) = ∑ n + 1 k = 0 K i log ( c i + r ) ( c 0 > c 1 > ... > c n + 1 and K i > 0 ) ⇒ generalised REM-behaviour ( n -RSB):

  13. Sketch of proof Compare with a class of hierarchically correlated fields. ◮ “Generalised random energy model” : r ∈ [ 0; d ] : � � α ( 1 ) , α ( 2 ) ∈ ◆ n , a ( α ( 1 ) ) , a ( α ( 2 ) ) = − D ′ ( 2 ( r − q ( α ( 1 ) , α ( 2 ) ))) , Cov where 0 = q 0 < q 1 < ... < q n < q n + 1 = r , ultrametric overlap : q ( α ( 1 ) , α ( 2 ) ) : = q max { k ∈ [ 1; n ] ∩ ◆ : [ α ( 1 ) ] k =[ α ( 2 ) ] k } . ◮ Comparison process: N α ∈ ◆ n . ∑ A ( u , α ) : = u i a i ( α ) , u ∈ S N , i = 1

  14. Multiplicative probability cascades ◮ Let { g i } 2 N i = 1 be i.i.d. r.v. of Gumbel extremal-type (say, Gaussian) 2 N ∑ δ exp ( u N ( g i ) / x ) = N → + ∞ ξ ( x ) , = = = ⇒ x ∈ ( 0;1 ) . i = 1 where u N ( y ) = a N y + b N is the linear extreme value normalisation . ◮ Ruelle (1987) : ξ ( x ) : = { δ ξ ( x ) i } i ∈ ◆ : = PPP ( ❘ + ∋ t �→ xt − x − 1 ) , x ∈ ( 0;1 )

  15. Cascades Ruelle’s probability cascades (RPC) : ξ ( x 1 ) i 1 · ξ ( i 1 ) ( x 2 ) i 2 · ξ ( i 1 , i 2 ) ( x 3 ) i 3 ··· ξ ( i 1 , i 2 ,..., i n − 1 ) ( x n ) i n : i = ( i 1 ,..., i n ) ∈ ◆ n � � = : RPC ( x 1 ,..., x n ) , where 0 < x 1 < ... < x n < 1 , ξ ( i 1 , i 2 ,..., i k − 1 ) ( x k ) i.i.d. ξ ( x k ) .

  16. RPC construction (sketch)

  17. Comparison ◮ Interpolation : √ √ α ∈ ◆ n . H t ( u , α ) : = tX ( u )+ 1 − tA ( u , α ) , t ∈ [ 0;1 ] , u ∈ S N , ◮ Extended free energy functional : � � � ��� √ Φ N ( x )[ H t ] : = 1 � µ N ( d u ) ∑ β NH t ( u , α ) N ❊ log RPC ( x ) α exp . S N α ∈ ◆ n ◮ Fundamental theorem of calculus: � 1 d p N ( β ) = Φ N ( x )[ H 1 ] = Φ N ( x )[ H 0 ]+ d t Φ N ( x )[ H t ] d t , 0 where ◮ nonlinear summand = Φ N ( x )[ H 0 ] . � 1 d ◮ linear summand + (annoying) remainder = d t Φ N ( x )[ H t ] . 0

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend