least action filtering
play

Least-Action Filtering L. C. G. Rogers Statistical Laboratory, - PowerPoint PPT Presentation

Least-Action Filtering L. C. G. Rogers Statistical Laboratory, University of Cambridge Least-Action Filtering p. 1/1 Summary Least-Action Filtering p. 2/1 Summary Basics of least-action filtering Finding the least-action


  1. Least-Action Filtering L. C. G. Rogers Statistical Laboratory, University of Cambridge Least-Action Filtering – p. 1/1

  2. Summary Least-Action Filtering – p. 2/1

  3. Summary • Basics of least-action filtering • Finding the least-action path • The approximate conditional distribution of the hidden path • Example(s) Relationship to particle filtering (SMC) • Least-Action Filtering – p. 2/1

  4. Summary • Basics of least-action filtering • Finding the least-action path • The approximate conditional distribution of the hidden path • Example(s) Relationship to particle filtering (SMC) • SAMSI Program on Sequential Monte Carlo Methods, 9/08-9/09. Organisers: Arnaud Doucet, Simon Godsill Working group on continuous-time methods (Fearnhead, Voss, ....) Least-Action Filtering – p. 2/1

  5. Summary • Basics of least-action filtering • Finding the least-action path • The approximate conditional distribution of the hidden path • Example(s) Relationship to particle filtering (SMC) • SAMSI Program on Sequential Monte Carlo Methods, 9/08-9/09. Organisers: Arnaud Doucet, Simon Godsill Working group on continuous-time methods (Fearnhead, Voss, ....) Markussen (SPA 119 , 208-231, 2009) uses similar techniques to approximate the density of a discretely-sampled diffusion process Least-Action Filtering – p. 2/1

  6. The setting. Least-Action Filtering – p. 3/1

  7. The setting. Diffusion Z t ≡ [ X t ; Y t ] in R d , solving dZ t = σ ( t, Z t ) dW t + µ ( t, Z t ) dt Least-Action Filtering – p. 3/1

  8. The setting. Diffusion Z t ≡ [ X t ; Y t ] in R d , solving dZ t = σ ( t, Z t ) dW t + µ ( t, Z t ) dt where σ , µ and σ − 1 are C 2 b . Least-Action Filtering – p. 3/1

  9. The setting. Diffusion Z t ≡ [ X t ; Y t ] in R d , solving dZ t = σ ( t, Z t ) dW t + µ ( t, Z t ) dt where σ , µ and σ − 1 are C 2 b . We observe ( Y t ) 0 ≤ t ≤ T and want to find the conditional distribution of ( X t ) 0 ≤ t ≤ T . Least-Action Filtering – p. 3/1

  10. The setting. Diffusion Z t ≡ [ X t ; Y t ] in R d , solving dZ t = σ ( t, Z t ) dW t + µ ( t, Z t ) dt where σ , µ and σ − 1 are C 2 b . We observe ( Y t ) 0 ≤ t ≤ T and want to find the conditional distribution of ( X t ) 0 ≤ t ≤ T . Closely related is the Euler scheme dz ( n ) = σ ( t n , z ( n ) t n ) dW t + µ ( t n , z ( n ) t n ) dt t where t n ≡ 2 − n [2 n t ] . Least-Action Filtering – p. 3/1

  11. The setting. Diffusion Z t ≡ [ X t ; Y t ] in R d , solving dZ t = σ ( t, Z t ) dW t + µ ( t, Z t ) dt where σ , µ and σ − 1 are C 2 b . We observe ( Y t ) 0 ≤ t ≤ T and want to find the conditional distribution of ( X t ) 0 ≤ t ≤ T . Closely related is the Euler scheme dz ( n ) = σ ( t n , z ( n ) t n ) dW t + µ ( t n , z ( n ) t n ) dt t where t n ≡ 2 − n [2 n t ] . Despite appearances, this can be viewed as a discrete scheme. Least-Action Filtering – p. 3/1

  12. The setting. Diffusion Z t ≡ [ X t ; Y t ] in R d , solving dZ t = σ ( t, Z t ) dW t + µ ( t, Z t ) dt where σ , µ and σ − 1 are C 2 b . We observe ( Y t ) 0 ≤ t ≤ T and want to find the conditional distribution of ( X t ) 0 ≤ t ≤ T . Closely related is the Euler scheme dz ( n ) = σ ( t n , z ( n ) t n ) dW t + µ ( t n , z ( n ) t n ) dt t where t n ≡ 2 − n [2 n t ] . Despite appearances, this can be viewed as a discrete scheme. We also have − Z t | a.s. | z ( n ) sup → 0 . t 0 ≤ t ≤ T Least-Action Filtering – p. 3/1

  13. The setting. Diffusion Z t ≡ [ X t ; Y t ] in R d , solving dZ t = σ ( t, Z t ) dW t + µ ( t, Z t ) dt where σ , µ and σ − 1 are C 2 b . We observe ( Y t ) 0 ≤ t ≤ T and want to find the conditional distribution of ( X t ) 0 ≤ t ≤ T . Closely related is the Euler scheme dz ( n ) = σ ( t n , z ( n ) t n ) dW t + µ ( t n , z ( n ) t n ) dt t where t n ≡ 2 − n [2 n t ] . Despite appearances, this can be viewed as a discrete scheme. We also have − Z t | a.s. | z ( n ) sup → 0 . t 0 ≤ t ≤ T Use continuous time for guidance, discrete time for numerics and proof. Least-Action Filtering – p. 3/1

  14. Log Likelihoods. Least-Action Filtering – p. 4/1

  15. Log Likelihoods. See y ( j 2 − n ) 0 ≤ j ≤ 2 n T and want conditional law of x ( j 2 − n ) 0 ≤ j ≤ 2 n T . Least-Action Filtering – p. 4/1

  16. Log Likelihoods. See y ( j 2 − n ) 0 ≤ j ≤ 2 n T and want conditional law of x ( j 2 − n ) 0 ≤ j ≤ 2 n T . Log-likelihood is (to within additive constant) ( N ≡ 2 n T, h ≡ 2 − n ) N − 1 ˛ σ ( jh, z jh ) − 1 ` z jh + h − z jh − hµ ( jh, z jh ) ´ ˛ 1 ˛ 2 − ϕ ( x 0 ) X ˛ λ ( x | y ) = − 1 2 h j =0 N − 1 ˛ σ ( jh, z jh ) − 1 ` z jh + h − z jh ˛ 2 − ϕ ( x 0 ) X ˛ ´ ˛ = − 1 h − µ ( jh, z jh ) 2 h j =0 Z T ˛ 2 ds − ϕ ( x 0 ) , ˛ σ ( s, z s ) − 1 ` ˛ ´ ˛ “ = ” − 1 z s − µ ( s, z s ) ˙ 2 0 where exp( − ϕ ) is the (prior) density of X 0 . Least-Action Filtering – p. 4/1

  17. Log Likelihoods. See y ( j 2 − n ) 0 ≤ j ≤ 2 n T and want conditional law of x ( j 2 − n ) 0 ≤ j ≤ 2 n T . Log-likelihood is (to within additive constant) ( N ≡ 2 n T, h ≡ 2 − n ) N − 1 ˛ σ ( jh, z jh ) − 1 ` z jh + h − z jh − hµ ( jh, z jh ) ´ ˛ 1 ˛ 2 − ϕ ( x 0 ) X ˛ λ ( x | y ) = − 1 2 h j =0 N − 1 ˛ σ ( jh, z jh ) − 1 ` z jh + h − z jh ˛ 2 − ϕ ( x 0 ) X ˛ ´ ˛ = − 1 h − µ ( jh, z jh ) 2 h j =0 Z T ˛ 2 ds − ϕ ( x 0 ) , ˛ σ ( s, z s ) − 1 ` ˛ ´ ˛ “ = ” − 1 z s − µ ( s, z s ) ˙ 2 0 where exp( − ϕ ) is the (prior) density of X 0 . Maximising the log-likelihood is like maximising Z T ˛ 2 ds − ϕ ( x 0 ) ˛ σ ( s, z s ) − 1 ` ˛ ´ ˛ Λ( x | y ) = − 1 z s − µ ( s, z s ) ˙ 2 0 Z T ≡ − ψ ( s, x s , p s ) ds − ϕ ( x 0 ) 0 where p s ≡ ˙ x s . Least-Action Filtering – p. 4/1

  18. Log Likelihoods. See y ( j 2 − n ) 0 ≤ j ≤ 2 n T and want conditional law of x ( j 2 − n ) 0 ≤ j ≤ 2 n T . Log-likelihood is (to within additive constant) ( N ≡ 2 n T, h ≡ 2 − n ) N − 1 ˛ σ ( jh, z jh ) − 1 ` z jh + h − z jh − hµ ( jh, z jh ) ´ ˛ 1 ˛ 2 − ϕ ( x 0 ) X ˛ λ ( x | y ) = − 1 2 h j =0 N − 1 ˛ σ ( jh, z jh ) − 1 ` z jh + h − z jh ˛ 2 − ϕ ( x 0 ) X ˛ ´ ˛ = − 1 h − µ ( jh, z jh ) 2 h j =0 Z T ˛ 2 ds − ϕ ( x 0 ) , ˛ σ ( s, z s ) − 1 ` ˛ ´ ˛ “ = ” − 1 z s − µ ( s, z s ) ˙ 2 0 where exp( − ϕ ) is the (prior) density of X 0 . Maximising the log-likelihood is like maximising Z T ˛ 2 ds − ϕ ( x 0 ) ˛ σ ( s, z s ) − 1 ` ˛ ´ ˛ Λ( x | y ) = − 1 z s − µ ( s, z s ) ˙ 2 0 Z T ≡ − ψ ( s, x s , p s ) ds − ϕ ( x 0 ) 0 where p s ≡ ˙ x s . This is a task for calculus of variations .... Least-Action Filtering – p. 4/1

  19. Calculus of Variations. Least-Action Filtering – p. 5/1

  20. Calculus of Variations. If we perturb optimal x ∗ to x ∗ + ξ , the first-order change is Z T „ « ψ ( s, x ∗ s , p ∗ ∆Λ = ∆ − s ) ds − ϕ ( x 0 ) 0 Z T ξ · D x ψ + ˙ ˘ ¯ = − ξ · D p ψ ds − ξ (0) · D x ϕ 0 Z T − [ ξ · D p ψ ] T ˘ ¯ = 0 + ξ · D tp ψ + ( D px ψ ) ˙ x + ( D pp ψ ) ˙ p − D x ψ ds − ξ (0) · D x ϕ. 0 Least-Action Filtering – p. 5/1

  21. Calculus of Variations. If we perturb optimal x ∗ to x ∗ + ξ , the first-order change is Z T „ « ψ ( s, x ∗ s , p ∗ ∆Λ = ∆ − s ) ds − ϕ ( x 0 ) 0 Z T ξ · D x ψ + ˙ ˘ ¯ = − ξ · D p ψ ds − ξ (0) · D x ϕ 0 Z T − [ ξ · D p ψ ] T ˘ ¯ = 0 + ξ · D tp ψ + ( D px ψ ) ˙ x + ( D pp ψ ) ˙ p − D x ψ ds − ξ (0) · D x ϕ. 0 Since ξ is arbitrary, we conclude that D p ψ (0 , x ∗ 0 , p ∗ 0 ) − D x ϕ ( x ∗ 0 = 0 ) x ∗ + ( D pp ψ ) ˙ p ∗ − D x ψ 0 = D tp ψ + ( D px ψ ) ˙ D p ψ ( T, x ∗ T , p ∗ 0 = T ) which is a second-order ODE for the optimal x ∗ , with boundary conditions at 0 and at T . Least-Action Filtering – p. 5/1

  22. Discrete Calculus of Variations. Least-Action Filtering – p. 6/1

  23. Discrete Calculus of Variations. With p j ≡ ( x jh + h − x jh ) /h , must minimize N − 1 X hψ ( t j , x j , p j ) + ϕ ( x 0 ) j =0 Least-Action Filtering – p. 6/1

  24. Discrete Calculus of Variations. With p j ≡ ( x jh + h − x jh ) /h , must minimize N − 1 X hψ ( t j , x j , p j ) + ϕ ( x 0 ) j =0 Perturbing x ∗ to x ∗ + ξ as before gives N − 1 ξ j · D x ψ ( t j , x j , p j ) + ξ j +1 − ξ j X ˘ ¯ 0 = h · D p ψ ( t j , x j , p j ) + ξ 0 · Dϕ ( x 0 ) h j =0 N − 1 X D x ψ ( t j , x j , p j ) − h − 1 ( D p ψ ( t j , x j , p j ) − D p ψ ( t j − 1 , x j − 1 , p j − 1 ) ˘ ¯ = h ξ j j =1 + ξ 0 · { Dϕ ( x 0 ) − D p ψ ( t 0 , x 0 , p 0 ) } + ξ N · D p ψ ( T, x N − 1 , p N − 1 ) Least-Action Filtering – p. 6/1

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend