fast semi differential based submodular function
play

Fast Semi-differential based Submodular Function Optimization - PowerPoint PPT Presentation

Background Submodular Semigradients Submodular Minimization Submodular Maximization Conclusion Fast Semi-differential based Submodular Function Optimization Rishabh Iyer 1 Stefanie Jegelka 2 Jeff Bilmes 1 1 University of Washington, Seattle 2


  1. Background Submodular Semigradients Submodular Minimization Submodular Maximization Conclusion Fast Semi-differential based Submodular Function Optimization Rishabh Iyer 1 Stefanie Jegelka 2 Jeff Bilmes 1 1 University of Washington, Seattle 2 University of California, Berkeley ICML-2013 Iyer et al, 2013 Fast Semi-differential based Submodular Function Optimization page 1 / 20

  2. Background Submodular Semigradients Submodular Minimization Submodular Maximization Conclusion Outline Submodular Functions in Machine Learning 1 Convexity, Concavity & Submodular Semigradient Descent 2 Submodular Minimization 3 Submodular Maximization 4 Conclusion 5 Iyer et al, 2013 Fast Semi-differential based Submodular Function Optimization page 2 / 20

  3. Background Submodular Semigradients Submodular Minimization Submodular Maximization Conclusion Set functions f : 2 V → R { , } , , , V = , , , , V is a finite “ground” set of objects. Iyer et al, 2013 Fast Semi-differential based Submodular Function Optimization page 3 / 20

  4. } Background Submodular Semigradients Submodular Minimization Submodular Maximization Conclusion Set functions f : 2 V → R { , } , , A = , A set function f : 2 V → R produces a value for any subset A ⊆ V . Iyer et al, 2013 Fast Semi-differential based Submodular Function Optimization page 3 / 20

  5. } Background Submodular Semigradients Submodular Minimization Submodular Maximization Conclusion Set functions f : 2 V → R { , } , , A = , A set function f : 2 V → R produces a value for any subset A ⊆ V . For example, f ( A ) = 22, Iyer et al, 2013 Fast Semi-differential based Submodular Function Optimization page 3 / 20

  6. } Background Submodular Semigradients Submodular Minimization Submodular Maximization Conclusion Set functions f : 2 V → R { , } , , A = , A set function f : 2 V → R produces a value for any subset A ⊆ V . For example, f ( A ) = 22, General set function optimization can be really hard! Iyer et al, 2013 Fast Semi-differential based Submodular Function Optimization page 3 / 20

  7. Background Submodular Semigradients Submodular Minimization Submodular Maximization Conclusion Submodular Set Functions Special class of set functions. f ( A ∪ v ) − f ( A ) ≥ f ( B ∪ v ) − f ( B ) , if A ⊆ B (1) Iyer et al, 2013 Fast Semi-differential based Submodular Function Optimization page 4 / 20

  8. Background Submodular Semigradients Submodular Minimization Submodular Maximization Conclusion Submodular Set Functions Special class of set functions. f ( A ∪ v ) − f ( A ) ≥ f ( B ∪ v ) − f ( B ) , if A ⊆ B (1) Iyer et al, 2013 Fast Semi-differential based Submodular Function Optimization page 4 / 20

  9. Background Submodular Semigradients Submodular Minimization Submodular Maximization Conclusion Submodular Set Functions Special class of set functions. f ( A ∪ v ) − f ( A ) ≥ f ( B ∪ v ) − f ( B ) , if A ⊆ B (1) Gain = 1 Iyer et al, 2013 Fast Semi-differential based Submodular Function Optimization page 4 / 20

  10. Background Submodular Semigradients Submodular Minimization Submodular Maximization Conclusion Submodular Set Functions Special class of set functions. f ( A ∪ v ) − f ( A ) ≥ f ( B ∪ v ) − f ( B ) , if A ⊆ B (1) Gain = 1 Gain = 0 Iyer et al, 2013 Fast Semi-differential based Submodular Function Optimization page 4 / 20

  11. Background Submodular Semigradients Submodular Minimization Submodular Maximization Conclusion Submodular Set Functions Special class of set functions. f ( A ∪ v ) − f ( A ) ≥ f ( B ∪ v ) − f ( B ) , if A ⊆ B (1) Gain = 1 Gain = 0 Monotonicity: f ( A ) ≤ f ( B ) , if A ⊆ B . Iyer et al, 2013 Fast Semi-differential based Submodular Function Optimization page 4 / 20

  12. Background Submodular Semigradients Submodular Minimization Submodular Maximization Conclusion Submodular Set Functions Special class of set functions. f ( A ∪ v ) − f ( A ) ≥ f ( B ∪ v ) − f ( B ) , if A ⊆ B (1) Gain = 1 Gain = 0 Monotonicity: f ( A ) ≤ f ( B ) , if A ⊆ B . Modular function f ( X ) = � i ∈ X f ( i ) analogous to linear functions. Iyer et al, 2013 Fast Semi-differential based Submodular Function Optimization page 4 / 20

  13. Background Submodular Semigradients Submodular Minimization Submodular Maximization Conclusion Submodular Function Maximization compute A ∗ ∈ argmax f ( A ) A ∈C where f is submodular, and where C is constraint set over which a modular function can be optimized efficiently. Iyer et al, 2013 Fast Semi-differential based Submodular Function Optimization page 5 / 20

  14. Background Submodular Semigradients Submodular Minimization Submodular Maximization Conclusion Submodular Function Maximization compute A ∗ ∈ argmax f ( A ) A ∈C where f is submodular, and where C is constraint set over which a modular function can be optimized efficiently. Sensor Placement (Krause et al, 2008) Iyer et al, 2013 Fast Semi-differential based Submodular Function Optimization page 5 / 20

  15. Background Submodular Semigradients Submodular Minimization Submodular Maximization Conclusion Submodular Function Maximization compute A ∗ ∈ argmax f ( A ) A ∈C where f is submodular, and where C is constraint set over which a modular function can be optimized efficiently. Sensor Placement (Krause et al, 2008) Document Summarization (Lin & Bilmes, 2011) Iyer et al, 2013 Fast Semi-differential based Submodular Function Optimization page 5 / 20

  16. Background Submodular Semigradients Submodular Minimization Submodular Maximization Conclusion Submodular Function Maximization compute A ∗ ∈ argmax f ( A ) A ∈C where f is submodular, and where C is constraint set over which a modular function can be optimized efficiently. Diversified Search (He Sensor Placement et al 2012, Kulesza & (Krause et al, 2008) Document Summarization Taskar, 2012) (Lin & Bilmes, 2011) Iyer et al, 2013 Fast Semi-differential based Submodular Function Optimization page 5 / 20

  17. Background Submodular Semigradients Submodular Minimization Submodular Maximization Conclusion Submodular Function Minimization compute A ∗ ∈ argmin f ( A ) A ∈C where f is submodular, and where C is constraint set over which a modular function can be optimized efficiently. Iyer et al, 2013 Fast Semi-differential based Submodular Function Optimization page 6 / 20

  18. Background Submodular Semigradients Submodular Minimization Submodular Maximization Conclusion Submodular Function Minimization compute A ∗ ∈ argmin f ( A ) A ∈C where f is submodular, and where C is constraint set over which a modular function can be optimized efficiently. Image segmentation / MAP inference (Boykov & Jolly 2001, Jegelka & Bilmes 2011, Delong et al, 2012) Iyer et al, 2013 Fast Semi-differential based Submodular Function Optimization page 6 / 20

  19. Background Submodular Semigradients Submodular Minimization Submodular Maximization Conclusion Submodular Function Minimization compute A ∗ ∈ argmin f ( A ) A ∈C where f is submodular, and where C is constraint set over which a modular function can be optimized efficiently. Clustering Image segmentation / MAP (Narasimhan & inference (Boykov & Jolly 2001, Bilmes 2011, Nagano Jegelka & Bilmes 2011, Delong et al, 2010) et al, 2012) Iyer et al, 2013 Fast Semi-differential based Submodular Function Optimization page 6 / 20

  20. Background Submodular Semigradients Submodular Minimization Submodular Maximization Conclusion Submodular Function Minimization compute A ∗ ∈ argmin f ( A ) A ∈C where f is submodular, and where C is constraint set over which a modular function can be optimized efficiently. Clustering Image segmentation / MAP Corpus Data Subset (Narasimhan & inference (Boykov & Jolly 2001, Selection (Lin & Bilmes 2011, Nagano Jegelka & Bilmes 2011, Delong Bilmes, 2011) et al, 2010) et al, 2012) Iyer et al, 2013 Fast Semi-differential based Submodular Function Optimization page 6 / 20

  21. Background Submodular Semigradients Submodular Minimization Submodular Maximization Conclusion Current State of Affairs for Submodular Optimization Iyer et al, 2013 Fast Semi-differential based Submodular Function Optimization page 7 / 20

  22. Background Submodular Semigradients Submodular Minimization Submodular Maximization Conclusion Current State of Affairs for Submodular Optimization Submodular Function Minimization Polynomial-time but too slow O ( n 5 × FuncEvalCost + n 6 ). Constrained minimization is NP-hard. Algorithms differ depending on the constraints. Iyer et al, 2013 Fast Semi-differential based Submodular Function Optimization page 7 / 20

  23. Background Submodular Semigradients Submodular Minimization Submodular Maximization Conclusion Current State of Affairs for Submodular Optimization Submodular Function Submodular Function Minimization Maximization Polynomial-time but too slow NP-hard but constant-factor O ( n 5 × FuncEvalCost + n 6 ). approximable. Constrained minimization is Large class of algorithms NP-hard. – Local search, continuous greedy, bi-directional greedy, Algorithms differ depending simulated annealing etc. on the constraints. Iyer et al, 2013 Fast Semi-differential based Submodular Function Optimization page 7 / 20

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend