submodular maximization seffi naor lecture 2 4th cargese
play

Submodular Maximization Seffi Naor Lecture 2 4th Cargese Workshop - PowerPoint PPT Presentation

Submodular Maximization Seffi Naor Lecture 2 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular Maximization Submodular Maximization Constrained Submodular Maximization Family of allowed subsets M 2 N . f ( S ) max


  1. Submodular Maximization Seffi Naor Lecture 2 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular Maximization

  2. Submodular Maximization Constrained Submodular Maximization Family of allowed subsets M ⊆ 2 N . f ( S ) max S ∈ M s . t . Seffi Naor Submodular Maximization

  3. Constrained Maximization - Problem I Seffi Naor Submodular Maximization

  4. Constrained Maximization - Problem I Seffi Naor Submodular Maximization

  5. Constrained Maximization - Problem I (Cont.) Problem I - Submodular Welfare Input: Collection Q of unsplittable items. 1 f i : 2 Q → R + monotone submodular utility, 1 � i � k . 2 Goal: Assign all items to maximize social welfare: ∑ k i = 1 f i ( Q i ) . Arises in the context of combinatorial auctions . [Lehman-Lehman-Nisan-01] Seffi Naor Submodular Maximization

  6. Constrained Maximization - Problem II Problem II - Submodular Maximization Over a Matroid Input: Matroid M = ( N , I ) and submodular f : 2 N → R + . Goal: Find S ∈ I maximizing f ( S ) . Case of monotone f captures: Submodular Welfare , Max- k -Coverage , Generalized-Assignment . . . Seffi Naor Submodular Maximization

  7. Constrained Maximization - Problem II Problem II - Submodular Maximization Over a Matroid Input: Matroid M = ( N , I ) and submodular f : 2 N → R + . Goal: Find S ∈ I maximizing f ( S ) . Case of monotone f captures: Submodular Welfare , Max- k -Coverage , Generalized-Assignment . . . Combinatorial Approach: Greedy and local search techniques. For some cases provides best-known/tight approximations: Knapsack constraint [Sviridenko-04] intersection of k matroids [Lee-Sviridenko-Vondr ´ ak-09],[Ward-12] k -exchange systems [Feldman-Naor-S-Ward-11] Seffi Naor Submodular Maximization

  8. The Greedy Approach [Nemhauer-Wolsey-Fisher-78] Greedy is a ( 1 / 2 ) -approximation for maximizing a monotone submodular f over a matroid. Seffi Naor Submodular Maximization

  9. The Greedy Approach [Nemhauer-Wolsey-Fisher-78] Greedy is a ( 1 / 2 ) -approximation for maximizing a monotone submodular f over a matroid. Uniform Matroid: � � 1 − 1 Greedy is a -approximation [Nemhauser-Wolsey-Fisher-78] . e Captures Max- k -Coverage . Tight for coverage functions [Feige-98] . Seffi Naor Submodular Maximization

  10. The Greedy Approach [Nemhauer-Wolsey-Fisher-78] Greedy is a ( 1 / 2 ) -approximation for maximizing a monotone submodular f over a matroid. Uniform Matroid: � � 1 − 1 Greedy is a -approximation [Nemhauser-Wolsey-Fisher-78] . e Captures Max- k -Coverage . Tight for coverage functions [Feige-98] . Non-monotone f over a matroid: ≈ 0.309 -approximation (fractional local search). [Vondr´ ak-09] ≈ 0.325 -approximation (simulated annealing). [Gharan-Vondr´ ak-11] ≈ 0.478 -hard absolute! [Gharan-Vondr´ ak-11] Seffi Naor Submodular Maximization

  11. Uniform Matroid Notation: f S ( u ) = f ( S ∪ u ) − f ( S ) Greedy Algorithm S 0 ← ∅ . 1 for i = 1 to k do : 2 u i ← argmax u / ∈ S i − 1 { f S i − 1 ( u ) } . Return S k . 3 Seffi Naor Submodular Maximization

  12. Uniform Matroid Notation: f S ( u ) = f ( S ∪ u ) − f ( S ) Greedy Algorithm S 0 ← ∅ . 1 for i = 1 to k do : 2 u i ← argmax u / ∈ S i − 1 { f S i − 1 ( u ) } . Return S k . 3 Theorem [Nemhauer-Wolsey-Fisher-78] For monotone submodular f , � � k � � 1 − 1 � 1 − 1 � 1 − · f ( OPT ) � · f ( OPT ) f ( S k ) � k e Seffi Naor Submodular Maximization

  13. Uniform Matroid Notation: f S ( u ) = f ( S ∪ u ) − f ( S ) Greedy Algorithm S 0 ← ∅ . 1 for i = 1 to k do : 2 u i ← argmax u / ∈ S i − 1 { f S i − 1 ( u ) } . Return S k . 3 Theorem [Nemhauer-Wolsey-Fisher-78] For monotone submodular f , � � k � � 1 − 1 � 1 − 1 � 1 − · f ( OPT ) � · f ( OPT ) f ( S k ) � k e Non-Monotone Submodular Functions 1 / e is best factor (continuous approach via multilinear extension) Seffi Naor Submodular Maximization

  14. Uniform Matroid Randomized Greedy Algorithm S 0 ← ∅ . 1 for i = 1 to k do : 2 u i ← uniformly choose in random an element from M i . S i ← S i − 1 ∪ u i . Return S k . 3 Seffi Naor Submodular Maximization

  15. Uniform Matroid Randomized Greedy Algorithm S 0 ← ∅ . 1 for i = 1 to k do : 2 u i ← uniformly choose in random an element from M i . S i ← S i − 1 ∪ u i . Return S k . 3 How is M i defined? M i ⊆ N \ S i − 1 : ∑ f S i − 1 ( u ) s . t . | M i | = k . max u ∈ M i Assumptions: (w.l.o.g. by adding dummy elements) |N \ S i − 1 | � k ∀ u ∈ N \ S i − 1 , f S i − 1 ( u ) � 0 comment: “empty” iteration if a dummy element is chosen. Seffi Naor Submodular Maximization

  16. Performance of Randomized Greedy Theorem [Buchbinder-Feldman-N-Schwartz-14] For monotone submodular f , � � k � � � � 1 − 1 1 − 1 E [ f ( S k )] � 1 − · f ( OPT ) � · f ( OPT ) k e Seffi Naor Submodular Maximization

  17. Performance of Randomized Greedy Theorem [Buchbinder-Feldman-N-Schwartz-14] For monotone submodular f , � � k � � � � 1 − 1 1 − 1 E [ f ( S k )] � 1 − · f ( OPT ) � · f ( OPT ) k e Theorem [Buchbinder-Feldman-N-Schwartz-14] For non-monotone submodular f , � 1 � k � 1 − 1 � · f ( OPT ) � · f ( OPT ) E [ f ( S k )] � k e Seffi Naor Submodular Maximization

  18. Monotone Submodular Functions condition on first i − 1 steps: expected gain at i th step: E [ f S i − 1 ( u i )] = 1 f S i − 1 ( u ) � 1 k · ∑ k · ∑ f S i − 1 ( u ) u ∈ M i u ∈ OPT \ S i − 1 f ( OPT ∪ S i − 1 ) − f ( S i − 1 ) f ( OPT ) − f ( S i − 1 ) � � k k Seffi Naor Submodular Maximization

  19. Monotone Submodular Functions condition on first i − 1 steps: expected gain at i th step: E [ f S i − 1 ( u i )] = 1 f S i − 1 ( u ) � 1 k · ∑ k · ∑ f S i − 1 ( u ) u ∈ M i u ∈ OPT \ S i − 1 f ( OPT ∪ S i − 1 ) − f ( S i − 1 ) f ( OPT ) − f ( S i − 1 ) � � k k taking expectations over all outcomes: E [ f S i − 1 ( u i )] � f ( OPT ) − E [ f ( S i − 1 )] k Seffi Naor Submodular Maximization

  20. Monotone Submodular Functions condition on first i − 1 steps: expected gain at i th step: E [ f S i − 1 ( u i )] = 1 f S i − 1 ( u ) � 1 k · ∑ k · ∑ f S i − 1 ( u ) u ∈ M i u ∈ OPT \ S i − 1 f ( OPT ∪ S i − 1 ) − f ( S i − 1 ) f ( OPT ) − f ( S i − 1 ) � � k k taking expectations over all outcomes: E [ f S i − 1 ( u i )] � f ( OPT ) − E [ f ( S i − 1 )] k rearranging: ( E [ f ( S i )] = E [ f ( S i − 1 )] + E [ f S i − 1 ( u i )] ) � � 1 − 1 f ( OPT ) − E [ f ( S i )] � · [ f ( OPT ) − E [ f ( S i − 1 )]] k Seffi Naor Submodular Maximization

  21. Monotone Submodular Functions implying: � i � 1 − 1 f ( OPT ) − E [ f ( S i )] � · [ f ( OPT ) − E [ f ( S 0 )]] k � i � 1 − 1 · f ( OPT ) � k Seffi Naor Submodular Maximization

  22. Monotone Submodular Functions implying: � i � 1 − 1 f ( OPT ) − E [ f ( S i )] � · [ f ( OPT ) − E [ f ( S 0 )]] k � i � 1 − 1 · f ( OPT ) � k thus: � � k � � � � 1 − 1 1 − 1 E [ f ( S k )] � 1 − · f ( OPT ) � · f ( OPT ) k e completing the proof. Seffi Naor Submodular Maximization

  23. Non-Monotone Submodular Functions condition on first i − 1 steps: expected gain at i th step: E [ f S i − 1 ( u i )] = 1 f S i − 1 ( u ) � 1 k · ∑ ∑ k · f S i − 1 ( u ) u ∈ M i u ∈ OPT \ S i − 1 f ( OPT ∪ S i − 1 ) − f ( S i − 1 ) � k Seffi Naor Submodular Maximization

  24. Non-Monotone Submodular Functions condition on first i − 1 steps: expected gain at i th step: E [ f S i − 1 ( u i )] = 1 f S i − 1 ( u ) � 1 k · ∑ ∑ k · f S i − 1 ( u ) u ∈ M i u ∈ OPT \ S i − 1 f ( OPT ∪ S i − 1 ) − f ( S i − 1 ) � k but what is f ( OPT ∪ S i − 1 ) for non-monotone f ? Seffi Naor Submodular Maximization

  25. Non-Monotone Submodular Functions condition on first i − 1 steps: expected gain at i th step: E [ f S i − 1 ( u i )] = 1 f S i − 1 ( u ) � 1 k · ∑ ∑ k · f S i − 1 ( u ) u ∈ M i u ∈ OPT \ S i − 1 f ( OPT ∪ S i − 1 ) − f ( S i − 1 ) � k but what is f ( OPT ∪ S i − 1 ) for non-monotone f ? Lemma For all 0 � i � k , � i � 1 − 1 E [ f ( OPT ∪ S i )] � · f ( OPT ) k proof deferred for now ... Seffi Naor Submodular Maximization

  26. Non-Monotone Submodular Functions taking expectations over all outcomes: � f ( OPT ∪ S i − 1 ) − f ( S i − 1 ) � E [ f S i − 1 ( u i )] � E k � i − 1 � 1 − 1 · f ( OPT ) − E [ f ( S i − 1 )] k � k Seffi Naor Submodular Maximization

  27. Non-Monotone Submodular Functions taking expectations over all outcomes: � f ( OPT ∪ S i − 1 ) − f ( S i − 1 ) � E [ f S i − 1 ( u i )] � E k � i − 1 � 1 − 1 · f ( OPT ) − E [ f ( S i − 1 )] k � k it can be proved by induction that: � i − 1 E [ f ( S i )] � i � 1 − 1 k · · f ( OPT ) k Seffi Naor Submodular Maximization

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend