minimizing submodular functions
play

Minimizing Submodular Functions Satoru Iwata (RIMS, Kyoto - PowerPoint PPT Presentation

Minimizing Submodular Functions Satoru Iwata (RIMS, Kyoto University) Outline Submodular Functions Examples Discrete Convexity Submodular Function Minimization Min-Max Theorem Combinatorial Algorithms Applications


  1. Minimizing Submodular Functions Satoru Iwata (RIMS, Kyoto University)

  2. Outline • Submodular Functions Examples Discrete Convexity • Submodular Function Minimization Min-Max Theorem Combinatorial Algorithms • Applications • Conclusion

  3. Submodular Functions : V Finite Set → ∀ , ⊆ V : 2 R X Y V f + ≥ ∩ + ∪ ( ) ( ) ( ) ( ) f X f Y f X Y f X Y • Cut Capacity Functions • Matroid Rank Functions • Entropy Functions X Y V

  4. Cut Capacity Function ∑ κ = Cut Capacity ( ) { ( ) | : leaving } X c a a X ≥ ( ) 0 c a t s X Max Flow Value = Min Cut Capacity

  5. ) Y Whitney (1935) ( | ρ X ≤ Matroid Rank Functions | ≤ ) ) X Submodular X ( ρ ( ρ ⇒ , V Y ⊆ ⊆ X : ρ ∀ X ] U Matrix Rank Function X , U [ A rank V X X = ) = ( ρ A

  6. Entropy Functions Information φ = ( ) 0 h Sources ( X ) : h Entropy of the Joint Distribution + ≥ ∩ + ∪ ( ) ( ) ( ) ( ) h X h Y h X Y h X Y X ≥ 0 Conditional Mutual Information

  7. Positive Definite Symmetric Matrices X φ = ( ) 0 f = ( ) log det [ ] f X A X [ X ] = A A Ky Fan’s Inequality + ≥ ∩ + ∪ ( ) ( ) ( ) ( ) f X f Y f X Y f X Y Extension of the Hadamard Inequality ∏ ≤ det A A ii ∈ i V

  8. ) Y ∪ V X ( f + ) Y Y Discrete Convexity ∩ X ( f ≥ ) Y ( f + X ) X ( f Convex Function y x

  9. Discrete Convexity Lovász (1983) V = { , , } a b c ˆ { c , } b : Linear Interpolation f ˆ { , } a b f : Convex { b } { c } f : Submodular { a } φ Discrete Convex Analysis Murota (2003)

  10. Submodular Function Minimization φ = ( ) 0 f Assumption: X Minimization Evaluation Algorithm Oracle ( X ) f ⊆ min{ ( ) | } ? f Y Y V Minimizer

  11. Submodular Function Minimization Grötschel, Lovász, Schrijver (1981, 1988) Ellipsoid Method γ 5 ( log ) Cunningham (1985) O n M γ + γ 7 8 7 ( ) O n n ( log ) O n n Iwata, Fleischer, Fujishige (2000) Schrijver (2000) Fleischer, Iwata (2000) Iwata (2002) Fully Combinatorial Iwata (2003) Orlin (2007) γ + γ + 4 5 5 6 ( ) (( ) log ) O n n O n n M Iwata, Orlin (2009)

  12. Base Polyhedra = → R R V { | } x V ∑ = ( ) ( ) x Y x v ∈ v Y Submodular Polyhedron = ∈ ∀ ⊆ ≤ R V ( ) { | , , ( ) ( )} P f x x Y V x Y f Y Base Polyhedron = ∈ = ( ) { | ( ), ( ) ( )} B f x x P f x V f V

  13. Edmonds (1970) Greedy Algorithm Shapley (1971) ( v ) L v v v v 1 2 n v ∈ = − − ( ) V ( ) ( ( )) ( ( ) { }) y v f L v f L v v : y Extreme Base ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ L 1 0 0 ( ) ( ( )) y v f L v 1 1 ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ O M 1 1 ( ) ( ( )) y v f L v ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ = 2 2 ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ M M O M M 0 ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ L ⎣ ⎦ ( ) ( ( )) 1 1 1 ⎣ ⎦ ⎣ ⎦ y v f L v n n

  14. Min-Max Theorem Edmonds (1970) Theorem − = ∈ min ( ) max{ ( ) | ( )} f Y x V x B f ⊆ Y V − = ( ) : min{ 0 , ( )} x v x v − ≤ ≤ ( ) ( ) ( ) x V x Y f Y

  15. Combinatorial Approach y L ∈ ( f ) Extreme Base B Convex Combination x ∑ = λ L y L ∈ Λ x L Cunningham (1985) γ 6 ( log ) O n M nM = max | ( ) | M f X X ⊆ V

  16. Combinatorial Approach x ∑ = λ L y L L ∈ Λ L : y Extreme Base L ≤ ∀ ∈ ( ) 0 , x v v T ≥ ∀ ∉ ( ) 0 , x v v T T ∴ = = ∀ ∈ Λ ( ) ( ) x T f T ( ) ( ), . y L T f T L − = = ( ) ( ) ( ) x V x T f T : T Minimizer

  17. Distance Labeling x ∑ = λ L y u v L L ∈ Λ L : y Extreme Base L Labeling u → ∈ Λ Ζ : ( ) d L V L ≤ ⇒ = ∀ ∈ Λ ( ) 0 ( ) 0 , . x u d u L L ⇒ ≤ p ( ) ( ). u v d u d v L L L − ≤ ∀ ∈ Λ ∀ ∈ | ( ) ( ) | 1 , , , . d u d u L K u V L K

  18. Distance Labeling = ∈ Λ ( ) : min{ ( ) | } d u d u L min L Gap of Level k v ∃ ∈ = , ( ) . v V d v k min ∀ ∈ ≠ − , ( ) 1 . v V d v k min < ≥ k k ≥ ⇒ ∉ ∀ . f ( ) , : d v k v Y Y Minimizer of min

  19. Distance Labeling T ≠ φ ⇒ X \ T = < ∪ ( ) ( ) ( ) f T x T x X T v ≤ ∪ ( ). f X T ∴ > ∩ ( ) ( ). f X f X T < ≥ k k ≥ ⇒ ∉ ∀ . f ( ) , : d v k v Y Y Minimizer of min

  20. Iteration η δ = η = ∈ : : max{ ( ) | } x v v V 4 n μ − μ > δ ∀ ∈ Find such that | ( ) | , . x v v V η δ δ 0 μ = ∈ ∈ Λ > μ : min{ ( ) | , , ( ) } l d u u V L x u L ∈ ∈ Λ = Select and such that ( ). u V L l d u L

  21. New Permutation μ η 0 L μ New_Permut ation ( , , ) ∉ l ⎧ ( ) ( ) d v v R = L ⎨ ( ) : d v ′ + ∈ L ⎩ ( ) 1 ( ) = ∈ = d v v R { | , ( ) } S v v V d v l L L = ∈ > μ = { | , ( ) }, \ R v v S x v Q S R L L ′ Q R

  22. Push Operation ′ Push ( , ) L L μ η 0 ⎧ ⎫ − μ ( ) x v β = ∈ ≠ ⎨ ⎬ : min | , ( ) ( ) v S y v y v ′ − L L ⎩ ( ) ( ) ⎭ y v y v ′ L L α = λ α = λ β : min{ , } Saturating L L α = β λ = α Nonsaturating ′ : L λ = λ − α L : L

  23. Potential Function ∑ + Φ = 2 ( ) ( ) x x v + = ( ) max{ ( ), 0 } x v x v ∈ v V x ′ x Nonsaturating Push Moves to ′ ⇒ Φ − Φ ≥ Φ 3 ( ) ( ) ( ) / 16 x x x n Φ x ≤ 2 Initially, ( ) . nM 3 ( log ) After Nonsaturating Pushes, O n nM Φ x < 2 ( ) 1 / . n η < η = ∈ 1 n / . : max{ ( ) | } x v v V

  24. Algorithm Termination → Z V : 2 f η = ∈ : max{ ( ) | } x v v V 1 η < n ⇒ : V Maximal Minimizer − ≥ > − = − Q ) ( ) ( ) ( ) 1 ( ) 1 . f X x V x V f V Λ = 3 | | ( log ) O n nM

  25. Running Time Bound ∑∑ Γ Λ = − ( ) [ ( )] n d L v ∈ Λ ∈ L v V Γ ( Λ A Saturating Push Decreases ). | Λ A Nonsaturating Push Increases by One | 2 Γ ( Λ . n and by at Most ) Γ ( Λ 5 ( log ) ) Total Increase of O n nM 5 ( log ) # Saturating Pushes O n nM γ 6 ( log ) O n nM Running Time

  26. Improvements γ 6 ( log ) • A Simple Algorithm O n nM • A Faster Weakly Polynomial Algorithm γ + 4 5 (( ) log ) O n n nM • A Strongly Polynomial Algorithm γ + 5 6 (( ) log ) O n n n • A Fully Combinatorial Algorithm γ + 7 8 (( ) log ) O n n n

  27. The Minimum-Norm Base 2 Minimize x ∗ ∈ x subject to ( ) x B f Fujishige (1984) Theorem ∗ : opt. sol. x ∗ = < : { | ( ) 0 } X v x v Minimal Minimizer − ∗ v = ≤ : { | ( ) 0 } X v x Maximal Minimizer 0 Nagano (2007) Remark ∑ ( ( )) g x v The minimum-norm base minimizes ∈ ( f ) in for any convex function B v V . g

  28. Evacuation Problem ( Dynamic Flow ) T Hoppe, Tardos (2000) S ( a ) : c Capacity τ ( a ) : Transit Time ( v ) : b Supply/Demand X ∩ ( X ) : o T \ S X Maximum Amount of Flow from to . ≤ ∀ ⊆ ∪ ( ) ( ), b X o X X S T Feasible

  29. X R ) Y Multiterminal Source Coding , X ( H ) ( X H ) Y | X ( H ) ) ) Y X Y ( Y R , X | H Y ( ( H H Decoder Slepian, Wolf (1973) X Y R R Encoder Encoder Y X

  30. Multiclass Queueing Systems Service Time Arrival Interval Server μ λ Service Rate Arrival Rate i i Multiclass M/M/1 Control Policy Preemptive

  31. Performance Region : s Expected Staying Time of a Job in j j ∑ ρ = λ μ ρ < : , 1 i i i i : s Achievable ∈ V i s j : s R Y ∑ ρ μ i i ∑ ρ ≥ ∀ ⊆ ∈ i X , S X V ∑ − ρ i i 1 ∈ i X i ∈ i X Coffman, Mitrani (1980) s i

  32. A Class of Submodular Functions ∈ R Itoko & I. (2005) V , , x y z + : h Nonnegative, Nondecreasing, Convex = − X ⊆ ( ) ( ) ( ) ( ( )) f X z X y X h x X ( ) V Submodular ρ = = ρ ∑ i : y ρ μ : z S μ i i i i i i ∑ i ρ ≥ ∀ ⊆ ∈ i X , S X V ∑ 1 − ρ i i 1 = ρ = 1 : ( ) : ∈ x h x i X i − i i ∈ x i X

  33. Zonotope in 3D z = ( ) ( ( ), ( ), ( )) w X x X y X z X = ⊆ conv { ( ) | } Z w X X V Zonotope ~ = − ( , , ) ( ) f x y z z yh x ⊆ min{ ( ) | } f X X V ~ = min{ ( , , ) | ( , , ) : Lower Extreme Point of } f x y z x y z Z ~ ( , , ) f x y z Remark: is NOT concave!

  34. Line Arrangement β α + β = x y z i i i α Enumerating All the Cells Topological Sweeping Method 2 ( ) O n Edelsbrunner, Guibas (1989)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend