outline submodular functions
play

( ) Outline Submodular - PowerPoint PPT Presentation

( ) Outline Submodular Functions Examples Discrete Convexity Minimizing Submodular Functions Symmetric Submodular Functions Maximizing Submodular Functions


  1. 劣モジュラ最適化 岩田 覚 ( 京都大学数理解析研究所 )

  2. Outline • Submodular Functions Examples Discrete Convexity • Minimizing Submodular Functions • Symmetric Submodular Functions • Maximizing Submodular Functions • Approximating Submodular Functions

  3. Submodular Functions : V Finite Set → ∀ , ⊆ V : 2 R X Y V f + ≥ ∩ + ∪ ( ) ( ) ( ) ( ) f X f Y f X Y f X Y • Cut Capacity Functions • Matroid Rank Functions • Entropy Functions X Y V

  4. Cut Capacity Function ∑ κ = Cut Capacity ( ) { ( ) | : leaving } X c a a X ≥ ( ) 0 c a t s X Max Flow Value = Min Cut Capacity

  5. ) Y Whitney (1935) ( | ρ X ≤ Matroid Rank Functions | ≤ ) ) X Submodular X ( ρ ( ρ ⇒ , V Y ⊆ ⊆ X : ρ ∀ X ] U Matrix Rank Function X , U [ A rank V X X = ) = ( ρ A

  6. Entropy Functions Information φ = ( ) 0 h Sources ( X ) : h Entropy of the Joint Distribution + ≥ ∩ + ∪ ( ) ( ) ( ) ( ) h X h Y h X Y h X Y X ≥ 0 Conditional Mutual Information

  7. Positive Definite Symmetric Matrices X φ = ( ) 0 f = ( ) log det [ ] f X A X [ X ] = A A Ky Fan’s Inequality + ≥ ∩ + ∪ ( ) ( ) ( ) ( ) f X f Y f X Y f X Y Extension of the Hadamard Inequality ∏ ≤ det A A ii ∈ i V

  8. Discrete Concavity ⊆ ⇒ S T ∪ − ≥ ∪ − ( { }) ( ) ( { }) ({ }) f S u f S f T u f u Diminishing Returns S T u V

  9. ) Y ∪ V X ( f + ) Y Y Discrete Convexity ∩ X ( f ≥ ) Y ( f + X ) X ( f Convex Function y x

  10. Discrete Convexity Lovász (1983) V = { , , } a b c ˆ { c , } b : Linear Interpolation f ˆ { , } a b f : Convex { b } { c } f : Submodular { a } φ Discrete Convex Analysis Murota (2003)

  11. Submodular Function Minimization φ = ( ) 0 f Assumption: X Minimization Evaluation Algorithm Oracle ( X ) f ⊆ min{ ( ) | } ? f Y Y V Minimizer Ellipsoid Method Grötschel, Lovász, Schrijver (1981)

  12. Base Polyhedra = → V { | } R x V R ∑ = ( ) ( ) x Y x v ∈ v Y Submodular Polyhedron = ∈ ∀ ⊆ ≤ V ( ) { | , , ( ) ( )} P f x x Y V x Y f Y R Base Polyhedron = ∈ = ( ) { | ( ), ( ) ( )} B f x x P f x V f V

  13. Edmonds (1970) Greedy Algorithm Shapley (1971) ( v ) L v v v v 1 2 n v ∈ = − − ( ) V ( ) ( ( )) ( ( ) { }) y v f L v f L v v : y Extreme Base ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ L 1 0 0 ( ) ( ( )) y v f L v 1 1 ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ O M 1 1 ( ) ( ( )) y v f L v ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ = 2 2 ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ M M O M M 0 ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ L ⎣ ⎦ ( ) ( ( )) 1 1 1 ⎣ ⎦ ⎣ ⎦ y v f L v n n

  14. Min-Max Theorem Edmonds (1970) Theorem − = ∈ min ( ) max{ ( ) | ( )} f Y x V x B f ⊆ Y V − = ( ) : min{ 0 , ( )} x v x v − ≤ ≤ ( ) ( ) ( ) x V x Y f Y

  15. Combinatorial Approach y L ∈ ( f ) Extreme Base B Convex Combination x ∑ = λ L y L ∈ Λ x L Cunningham (1985) γ 6 ( log ) O n M nM = max | ( ) | M f X X ⊆ V

  16. Submodular Function Minimization Grötschel, Lovász, Schrijver (1981, 1988) Ellipsoid Method γ 5 ( log ) Cunningham (1985) O n M γ + γ 7 8 7 ( ) O n n ( log ) O n n Iwata, Fleischer, Fujishige (2000) Schrijver (2000) Fleischer, Iwata (2000) Iwata (2002) Fully Combinatorial Iwata (2003) Orlin (2007) γ + γ + 4 5 5 6 ( ) (( ) log ) O n n O n n M Iwata, Orlin (2009)

  17. The Minimum-Norm Base 2 Minimize x ∗ ∈ x subject to ( ) x B f Fujishige (1984) Theorem ∗ : opt. sol. x ∗ = < : { | ( ) 0 } X v x v Minimal Minimizer − ∗ v = ≤ : { | ( ) 0 } X v x Maximal Minimizer 0 Wolfe’s Algorithm Practically Efficient

  18. Evacuation Problem ( Dynamic Flow ) T Hoppe, Tardos (2000) S ( a ) : c Capacity τ ( a ) : Transit Time ( v ) : b Supply/Demand X ∩ ( X ) : o T \ S X Maximum Amount of Flow from to . ≤ ∀ ⊆ ∪ ( ) ( ), b X o X X S T Feasible

  19. X R ) Y Multiterminal Source Coding , X ( H ) ( X H ) Y | X ( H ) ) ) Y X Y ( Y R , X | H Y ( ( H H Decoder Slepian, Wolf (1973) X Y R R Encoder Encoder Y X

  20. Multiclass Queueing Systems Service Time Arrival Interval Server μ λ Service Rate Arrival Rate i i Multiclass M/M/1 Control Policy Preemptive

  21. Performance Region : s Expected Staying Time of a Job in j j ∑ ρ = λ μ ρ < : , 1 i i i i : s Achievable ∈ V i s j : s R Y ∑ ρ μ i i ∑ ρ ≥ ∀ ⊆ ∈ i X , S X V ∑ − ρ i i 1 ∈ i X i ∈ i X Coffman, Mitrani (1980) s i

  22. A Class of Submodular Functions ∈ R Itoko & Iwata (2005) V , , x y z + : h Nonnegative, Nondecreasing, Convex = − X ⊆ ( ) ( ) ( ) ( ( )) f X z X y X h x X ( ) V Submodular ρ = = ρ ∑ i : y ρ μ : z S μ i i i i i i ∑ i ρ ≥ ∀ ⊆ ∈ i X , S X V ∑ 1 − ρ i i 1 = ρ = 1 : ( ) : ∈ x h x i X i − i i ∈ x i X

  23. Zonotope in 3D z = ( ) ( ( ), ( ), ( )) w X x X y X z X = ⊆ conv { ( ) | } Z w X X V Zonotope ~ = − ( , , ) ( ) f x y z z yh x ⊆ min{ ( ) | } f X X V ~ = min{ ( , , ) | ( , , ) : Lower Extreme Point of } f x y z x y z Z ~ ( , , ) f x y z Remark: is NOT concave!

  24. Line Arrangement β α + β = x y z i i i α Enumerating All the Cells Topological Sweeping Method 2 ( ) O n Edelsbrunner, Guibas (1989)

  25. Symmetric Submodular Functions → V : 2 f R = ∀ ⊆ ( ) ( \ ), . f X f V X X V Symmetric Crossing Submodular ∩ ≠ φ ∪ ≠ ⇒ , X Y X Y V + ≥ ∪ + ∩ ( ) ( ) ( ) ( ) f X f Y f X Y f X Y Symmetric Submodular Function Minimization φ ≠ ⊂ ≠ min{ ( ) | , } ? f X X V X V

  26. Maximum Adjacency Ordering • Minimum Cut Algorithm by MA-ordering Nagamochi & Ibaraki (1992) • Simpler Proofs Frank (1994), Stoer & Wagner (1997) • Symmetric Submodular Functions Queyranne (1998) • Alternative Proofs Fujishige (1998), Rizzi (2000)

  27. Minimum Degree Ordering Nagamochi (2007) ISAAC’07, Sendai, Japan Finding the family of all extreme sets for symmetric crossing submodular functions 3 γ in time. ( ) O n Symmetric Submodular Function Minimization

  28. Extreme Sets : f Symmetric Crossing Submodular Function : X Extreme Set > ∀ ⊂ φ ≠ ≠ ( ) ( ), : . f Z f X Z X Z X The family of all extreme sets forms a laminar. Y X Y X + ≥ + ( ) ( ) ( \ ) ( \ ) f X f Y f X Y f Y X

  29. Flat Pair for Symmetric Submodular Functions ⊆ ≠ Flat Pair { , } ( ) u v V u v ≥ ∈ ( ) min{ ( ) | } , f X f x x X ∀ ⊆ ∩ = s.t. | { , } | 1 . X V X u v X v u { , } u v { , } u v Shrink into No Extreme Sets . u v a single vertex. Separate and

  30. MD-Ordering for Symmetric Submodular Functions V = : { ,..., } v v MD-ordering 1 i i ∈ , ,..., − , v v v v V 1 2 1 n n X V i Each has minimum value of v j ∈ ( ) f j − 1 v \ . among v V V − 1 j = + ∪ ⊆ ( ) : ( ) ( ) ( \ ) f X f X f V X X V V i i i Symmetric, Crossing Submodular

  31. MD-Ordering for Symmetric Submodular Functions The last two vertices of , v v − 1 n n an MD-ordering form a flat pair. Proof by Induction: { , } : V \ v − v f Flat Pair for on V 1 i n n i = n − 2 ,..., 1 , 0 . i = n − 2 i v v − 1 n n

  32. Time Complexity 2 γ ( ) O n • Finding an MD-ordering in time. 3 γ ( ) O n • Finding all the extreme sets in time. • Minimizing symmetric submodular functions 3 γ ( ) O n in time.

  33. Application to Clustering V X ,..., X Random variables 1 n V \ Partition into and V A A as independent as possible V \ A A ( ; ) Minimize I X A X \ A V φ ≠ A ≠ subject to V = − ( ; ) ( ) ( | ) I X X H X H X X A B B B A = + − ( ) ( ) ( , ) H X H X H X X A B A B

  34. Application to Clustering Greedy Split k ∑ ( ) Minimize f V i = 1 i = ∪ ∪ subject to L V V V 1 k ∩ = φ ≠ ( ) V V i j i j − ( 2 1 ) k -Approximation

  35. Submodurlar Function Maximization Approximation Algorithms Nemhauser, Wolsey, Fisher (1978) Monotone SF / Cardinality Constraint (1 - 1/e)-Approximation Feige, Mirrokni, Vondrák (FOCS 2007) Nonnegative SF 2/5-Approximation Vondrák (STOC 2008) Monotone SF / Matroid Constraint (1 - 1/e)-Approximation

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend