1 introduction 2 model 3 analysis 4 summary
play

1. Introduction 2. Model 3. Analysis 4. Summary 1. Introduction - PowerPoint PPT Presentation

DM from om chir hiral al U( U(1) 1) X dar dark k sect ector or And nd diphot diphoton on exces cess Takaaki Nomura (KIAS) Based on: P.Ko, T.N. arXiv:1601.02490 (to be published in PLB) and work in progress 2016-05-07 17 th New Higgs


  1. DM from om chir hiral al U( U(1) 1) X dar dark k sect ector or And nd diphot diphoton on exces cess Takaaki Nomura (KIAS) Based on: P.Ko, T.N. arXiv:1601.02490 (to be published in PLB) and work in progress 2016-05-07 17 th New Higgs Working Group @ Toyama

  2. 1. Introduction 2. Model 3. Analysis 4. Summary

  3. 1. Introduction Diphoton excess at 750 GeV ATLAS-CONF-2015-081, CMS-PAS-EXO-15-004 Both ATLAS and CMS observed bump on diphton invariant mass distribution 3.6 σ : ATLAS 2.6 σ : CMS (Local significance)

  4. 1. Introduction Diphoton excess at 750 GeV Updated results are presented at the Moriond 2016 3.9 (2.0) σ : ATLAS Local (Global Significance) 3.4 (1.6) σ : CMS CMS added 0.6 fb -1 13 TeV data and combined with 8 TeV result ATLAS-CONF-2015-081, CMS-PAS-EXO-15-004 Both ATLAS and CMS observed bump on diphton invariant mass distribution 3.6 σ : ATLAS 2.6 σ : CMS (Local significance)

  5. 1. Introduction Diphoton excess at 750 GeV (ATLAS) ATLAS Collaboration, ATLAS-CONF-2016-018. Spin 2 Spin 0

  6. 1. Introduction Diphoton excess at 750 GeV (ATLAS) Spin 0 Spin 2 Ø m X ~750 GeV ATLAS Collaboration, ATLAS-CONF-2016-018. Ø Width can be narrow or wide Ø Local significance 3.9 (3.6) σ for spin 0(2) Ø Global significance 2.0(1.8) σ for spin 0(2)

  7. 1. Introduction Diphoton excess at 750 GeV (ATLAS) Consistency between 8 TeV and 13 TeV result Deviation between 8 TeV and 13 TeV result Ø Spin 0 : 1.2 (2.1) σ for gg(qq) prodcution Ø Spin 2 : 2.7 (3.3) σ for gg(qq) prodcution

  8. 1. Introduction Diphoton excess at 750 GeV (CMS) CMS collaboration CMS-PAS-EXO-16-018 Spin 2 Spin 0 Ø Evaluated through likelihood scan vs equivalent 13TeV cross-section at mX = 750GeV under both spin (narrow-width) hypotheses Combined with 8 TeV data

  9. CMS collaboration CMS-PAS-EXO-16-018 1. Introduction Diphoton excess at 750 GeV (CMS) Spin 0 Spin 2 Spin 0 Spin 2

  10. 1. Introduction Diphoton excess at 750 GeV (CMS) Spin 2 Spin 0 Ø m X ~750 GeV Ø Narrow width is preferred Ø Local significance 3.4 σ (maximum) Ø Global significance 1.6 σ

  11. 1.introduction v Constraints from other modes arXiv:1604.06446 (Franceschini et. al.)

  12. 1.introduction How we can interpret the diphoton excess? Ø It could be new particle : spin 0 or 2 Spin 0 is preferred but spin 2 is not excluded Ø Cross section to produce a new particle φ σ ( pp → ϕ ) BR ( ϕ → γγ ) ≈ 3 − 10 fb Ø Width of φ Best fit value by ATLAS : Γ ~45 GeV (not so significant) CMS : Narrow width is preferred (<< 10 GeV) Narrow width? Or wide width? Width can be 0-100 GeV Ø No significant associated events (other jets, leptons etc.)

  13. 1. Introduction One scenario: gluon fusion + diphoton decay via loop Production: gluon fusion Diphoton decay channel γ g g γ Colored particle Charged particle

  14. 1. Introduction One scenario: gluon fusion + diphoton decay via loop Production: gluon fusion Diphoton decay channel γ g g γ Colored particle Charged particle It is not easy to get σ (gg →Φ New )BR( Φ New →γγ )~5 fb Ex) Two Higgs doublet Model (Type-II) (Angelescu, Djouadi, Moreau arxiv:1512.0492) σ (gg → A)~850 fb × 2cot 2 β σ (gg → H)~850 fb × cot 2 β BR(H →γγ )~O(10 -5 ) BR(A →γγ )~O(10 -5 ) We need exotic colored and/or charged particles Let us discuss simple case of (SM) singlet scalar boson + exotic particles

  15. 1. Introduction Simple way: vector-like fermion + singlet scalar Yukawa coupling and masses of VLF are arbitrary ( ) ϕ M F FF y FF v Lets consider F to be chiral under dark gauge symmetry v F is massless before dark gauge symmetry breaking v These Yukawa coupling and mass are related

  16. 1. Introduction Simple way: vector-like fermion + singlet scalar Yukawa coupling and masses of VLF are arbitrary ( ) ϕ M F FF y FF v Lets consider F to be chiral under dark gauge symmetry v F is massless before dark gauge symmetry breaking v These Yukawa coupling and mass are related Let us discuss diphoton excess via Dark sector Dark sector : charged under dark (extra) gauge symmetry

  17. 1. Introduction Our proposal SM+U(1) X + New fermions and scalars with U(1) X charge v New fermions are VL under SM but chiral under U(1) X New fermions get masses after U(1) X breaking v Relevant couplings are related to new gauge coupling g X v 750 GeV scalar can decay into new massive gauge boson (Z’) v DM candidate is contained in a model

  18. 1. Introduction 2. Model 3. Analysis 4. Summary

  19. 2. Model Model : local U(1) X model with exotic particles Contents in dark sector ( anomaly free ) (3 generations of fermions) X,N : DM candidate

  20. 2. Model Model : local U(1) X model with exotic particles Contents in dark sector ( anomaly free ) (3 generations of fermions) X,N : DM candidate New Lagrangian Y = y E E L E R Φ + y N N L N R Φ * + y U U L U R Φ * + y D D L D R Φ L + y Ee E L e R X + y Uu U L u R X * + y Dd D L d R X + h . c . 2 + λ H 4 + µ Φ 2 + µ X V = µ 2 H 2 X 2 Φ 2 2 X 4 + λ X X 4 + λ H Φ H 2 Φ 2 + λ HX H 2 + λ X Φ X 2 Φ 2 + λ Φ Φ

  21. 2. Model Model : local U(1) X model with exotic particles Contents in dark sector ( anomaly free ) (3 generations of fermions) X,N : DM candidate New Lagrangian Y = y E E L E R Φ + y N N L N R Φ * + y U U L U R Φ * + y D D L D R Φ L Giving mass for new fermions + gg fusion and γγ decay of Φ + y Ee E L e R X + y Uu U L u R X * + y Dd D L d R X + h . c . 2 + λ H 4 + µ Φ 2 + µ X V = µ 2 H 2 X 2 Φ 2 2 X 4 + λ X X 4 + λ H Φ H 2 Φ 2 + λ HX H 2 + λ X Φ X 2 Φ 2 + λ Φ Φ

  22. 2. Model Model : local U(1) X model with exotic particles Contents in dark sector ( anomaly free ) (3 generations of fermions) X,N : DM candidate New Lagrangian Y = y E E L E R Φ + y N N L N R Φ * + y U U L U R Φ * + y D D L D R Φ L Giving mass for new fermions + gg fusion and γγ decay of Φ + y Ee E L e R X + y Uu U L u R X * + y Dd D L d R X + h . c . Decay of new fermions F 2 + λ H 4 + µ Φ 2 + µ X V = µ 2 H 2 X 2 Φ 2 F → X f SM 2 X 4 + λ X X 4 + λ H Φ H 2 Φ 2 + λ HX H 2 + λ X Φ X 2 Φ 2 + λ Φ Φ

  23. 2. Model Gauge Symmetry breaking and Z’ v VEVs of scalar fields U(1) X is broken by < Φ > H = 1 Φ = 1 v , v φ 2 2 Massive Z’ − µ 2 2 − µ Φ ( ) v ≈ λ , v φ ≈ λ H Φ << 1 We assume H- Φ mixing is negligible λ Φ Φ = ( v φ + φ + iG X ) / 2 v Masses of Z’ and new fermions 2( a + b ) g X m F y F = m F = y F 2 ≈ ( a + b ) 2 g X m Z ' 2 v φ 2 , m Z ' v φ 2 2 g X 2 λ Φ = 2 m φ 2 m Z ' v Z’ decays through small Z-Z’ mixing

  24. 2. Model BRs of Z’ in model 1.00 Z Z’ f SM q q 0.50 e � e � � Μ � Μ � f SM 0.20 BR Ν Ν Τ � Τ � 0.10 0.05 150 200 250 300 350 m Z ' � GeV � v Z’ decays into SM fermions via kinetic mixing of U(1) Y and U(1) X

  25. 2. Model BRs of Z’ in model 1.00 Z Z’ f SM q q 0.50 e � e � � Μ � Μ � f SM 0.20 BR Ν Ν Τ � Τ � f SM Z’ 0.10 F X 0.05 F f SM 150 200 250 300 350 m Z ' � GeV � v Z’ decays into SM fermions via kinetic mixing of U(1) Y and U(1) X v Yukawa interaction XFf may change the BRs (we ignore in this talk)

  26. 2. Model Stability of Dark Matter candidate v Accidental Z 2 symmetry after U(1)X breaking F L , F R , X : Z 2 odd Others : Z 2 even Neutral Z 2 odd particle can be DM candidate : X, N Note: There can be a term : Φ n X ( Φ n X*) a/(a+b)=n for gauge invariance : suitable choice of a, b can make a/(a+b) non-integer (absolutely stable), or make n very large (long-lived X). We choose a~b~1 for simplicity

  27. 1. Introduction 2. Model 3. Analysis 4. Summary

  28. 3. Analysis Relic density of the Dark Matter X, N We focus on the annihilation processes N N Z’ Z’ XX → Z’Z’ NN → Z’Z’ N Z’ Z’ N X Z’ Z’ X X Z’ Z’ X Relevant gauge interactions Search for the parameter region satisfying observed relic density 0.1159 ≤ Ω D h 2 ≤ 0.1215 Planck data (90% C.L.) P.A.R. Ade et al [Planck Collaboration] (2013) Ω D is Calculated with MicrOMEGAs ( G. Belanger, F. Boudjema, A. Pukhov and A. Semenov)

  29. 3. Analysis Relic density of the Dark Matter X 2.00 M N � 600 GeV Λ X � � 0 0.70 1.00 g x � 0.1 M N � 600 GeV 0.50 0.50 0.20 Λ X � g X g x � 0.3 0.30 0.10 0.05 0.20 0.15 0.02 150 200 300 500 150 200 300 500 m X � GeV � m X � GeV � v For non-zero λ X Φ s-channel and t(u)-channel interfere v The resonant effect around m X ~ m Φ /2 for non-zero λ X Φ v g x = 0.2 ~ 0.5 can provide with relic density (m X = 120~500 GeV)

  30. 3. Analysis Relic density of the Dark Matter N m X � 600 GeV 0.70 0.50 g X 0.30 0.20 0.15 150 200 300 500 m N � GeV � v s-channel and t(u)-channel always interfere v The resonant effect around m X ~ m Φ /2 v g x < 0.5 can provide with relic density (m X = 120~500 GeV)

  31. 3. Analysis Direct detection constraint of DM Possible DM-nucleon scattering processes v Z’ exchanging suppressed by small Z-Z’ mixing v The SM Higgs exchanging suppressed by small λ XH v φ exchanging non-trivial if λ X Φ is not zero XXGG effective interaction X-nucleon scattering cross section (F. Giacchino, A. Ibarra, L. L. Honorez, M. H. G. Tytgat and S. Wild, JCAP 1602, no. 02, 002 (2016) [arXiv:1511.04452 [hep-ph]] ) f TG is the numerical value Ø In current case σ DN < 10 -48 cm 2

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend