k step ahead prediction error model
play

k -Step Ahead Prediction Error Model 1. k -Step Ahead Prediction - PowerPoint PPT Presentation

k -Step Ahead Prediction Error Model 1. k -Step Ahead Prediction Error Model 1. ARMAX model is ARMA plus eXogeneous signal model: A ( z ) y ( n ) = B ( z ) u ( n k ) + C ( z ) ( n ) k -Step Ahead Prediction Error Model 1. ARMAX model is


  1. Example: Splitting Noise into Past and Future 5.

  2. Example: Splitting Noise into Past and Future 5. 1 + 0 . 5 z − 1 u ( n + j − 2) y ( n + j ) = 1 − 0 . 6 z − 1 − 0 . 16 z − 2 + 1 − 0 . 6 z − 1 − 0 . 16 z − 2 ξ ( n + j )

  3. Example: Splitting Noise into Past and Future 5. 1 + 0 . 5 z − 1 u ( n + j − 2) y ( n + j ) = 1 − 0 . 6 z − 1 − 0 . 16 z − 2 + 1 − 0 . 6 z − 1 − 0 . 16 z − 2 ξ ( n + j ) Split C into E j and F j , for j = 2 :

  4. Example: Splitting Noise into Past and Future 5. 1 + 0 . 5 z − 1 u ( n + j − 2) y ( n + j ) = 1 − 0 . 6 z − 1 − 0 . 16 z − 2 + 1 − 0 . 6 z − 1 − 0 . 16 z − 2 ξ ( n + j ) Split C into E j and F j , for j = 2 : 1 + 0 . 5 z − 1 0 . 82 + 0 . 176 z − 1 1 − 0 . 6 z − 1 − 0 . 16 z − 2 = (1 + 1 . 1 z − 1 ) + z − 2 1 − 0 . 6 z − 1 − 0 . 16 z − 2

  5. Example: Splitting Noise into Past and Future 5. 1 + 0 . 5 z − 1 u ( n + j − 2) y ( n + j ) = 1 − 0 . 6 z − 1 − 0 . 16 z − 2 + 1 − 0 . 6 z − 1 − 0 . 16 z − 2 ξ ( n + j ) Split C into E j and F j , for j = 2 : 1 + 0 . 5 z − 1 0 . 82 + 0 . 176 z − 1 1 − 0 . 6 z − 1 − 0 . 16 z − 2 = (1 + 1 . 1 z − 1 ) + z − 2 1 − 0 . 6 z − 1 − 0 . 16 z − 2 Substitute it in the expression for y ( n + j ) ,

  6. Example: Splitting Noise into Past and Future 5. 1 + 0 . 5 z − 1 u ( n + j − 2) y ( n + j ) = 1 − 0 . 6 z − 1 − 0 . 16 z − 2 + 1 − 0 . 6 z − 1 − 0 . 16 z − 2 ξ ( n + j ) Split C into E j and F j , for j = 2 : 1 + 0 . 5 z − 1 0 . 82 + 0 . 176 z − 1 1 − 0 . 6 z − 1 − 0 . 16 z − 2 = (1 + 1 . 1 z − 1 ) + z − 2 1 − 0 . 6 z − 1 − 0 . 16 z − 2 Substitute it in the expression for y ( n + j ) , with j = 2 :

  7. Example: Splitting Noise into Past and Future 5. 1 + 0 . 5 z − 1 u ( n + j − 2) y ( n + j ) = 1 − 0 . 6 z − 1 − 0 . 16 z − 2 + 1 − 0 . 6 z − 1 − 0 . 16 z − 2 ξ ( n + j ) Split C into E j and F j , for j = 2 : 1 + 0 . 5 z − 1 0 . 82 + 0 . 176 z − 1 1 − 0 . 6 z − 1 − 0 . 16 z − 2 = (1 + 1 . 1 z − 1 ) + z − 2 1 − 0 . 6 z − 1 − 0 . 16 z − 2 Substitute it in the expression for y ( n + j ) , with j = 2 : 1 y ( n + 2) = 1 − 0 . 6 z − 1 − 0 . 16 z − 2 u ( n )

  8. Example: Splitting Noise into Past and Future 5. 1 + 0 . 5 z − 1 u ( n + j − 2) y ( n + j ) = 1 − 0 . 6 z − 1 − 0 . 16 z − 2 + 1 − 0 . 6 z − 1 − 0 . 16 z − 2 ξ ( n + j ) Split C into E j and F j , for j = 2 : 1 + 0 . 5 z − 1 0 . 82 + 0 . 176 z − 1 1 − 0 . 6 z − 1 − 0 . 16 z − 2 = (1 + 1 . 1 z − 1 ) + z − 2 1 − 0 . 6 z − 1 − 0 . 16 z − 2 Substitute it in the expression for y ( n + j ) , with j = 2 : 1 y ( n + 2) = 1 − 0 . 6 z − 1 − 0 . 16 z − 2 u ( n ) + (1 + 1 . 1 z − 1 ) ξ ( n + 2)

  9. Example: Splitting Noise into Past and Future 5. 1 + 0 . 5 z − 1 u ( n + j − 2) y ( n + j ) = 1 − 0 . 6 z − 1 − 0 . 16 z − 2 + 1 − 0 . 6 z − 1 − 0 . 16 z − 2 ξ ( n + j ) Split C into E j and F j , for j = 2 : 1 + 0 . 5 z − 1 0 . 82 + 0 . 176 z − 1 1 − 0 . 6 z − 1 − 0 . 16 z − 2 = (1 + 1 . 1 z − 1 ) + z − 2 1 − 0 . 6 z − 1 − 0 . 16 z − 2 Substitute it in the expression for y ( n + j ) , with j = 2 : 1 y ( n + 2) = 1 − 0 . 6 z − 1 − 0 . 16 z − 2 u ( n ) + (1 + 1 . 1 z − 1 ) ξ ( n + 2) 0 . 82 + 0 . 176 z − 1 + z − 2 1 − 0 . 6 z − 1 − 0 . 16 z − 2 ξ ( n + 2)

  10. Example: Splitting Noise into Past and Future 5. 1 + 0 . 5 z − 1 u ( n + j − 2) y ( n + j ) = 1 − 0 . 6 z − 1 − 0 . 16 z − 2 + 1 − 0 . 6 z − 1 − 0 . 16 z − 2 ξ ( n + j ) Split C into E j and F j , for j = 2 : 1 + 0 . 5 z − 1 0 . 82 + 0 . 176 z − 1 1 − 0 . 6 z − 1 − 0 . 16 z − 2 = (1 + 1 . 1 z − 1 ) + z − 2 1 − 0 . 6 z − 1 − 0 . 16 z − 2 Substitute it in the expression for y ( n + j ) , with j = 2 : 1 y ( n + 2) = 1 − 0 . 6 z − 1 − 0 . 16 z − 2 u ( n ) + (1 + 1 . 1 z − 1 ) ξ ( n + 2) 0 . 82 + 0 . 176 z − 1 + z − 2 1 − 0 . 6 z − 1 − 0 . 16 z − 2 ξ ( n + 2) Second term is unknown;

  11. Example: Splitting Noise into Past and Future 5. 1 + 0 . 5 z − 1 u ( n + j − 2) y ( n + j ) = 1 − 0 . 6 z − 1 − 0 . 16 z − 2 + 1 − 0 . 6 z − 1 − 0 . 16 z − 2 ξ ( n + j ) Split C into E j and F j , for j = 2 : 1 + 0 . 5 z − 1 0 . 82 + 0 . 176 z − 1 1 − 0 . 6 z − 1 − 0 . 16 z − 2 = (1 + 1 . 1 z − 1 ) + z − 2 1 − 0 . 6 z − 1 − 0 . 16 z − 2 Substitute it in the expression for y ( n + j ) , with j = 2 : 1 y ( n + 2) = 1 − 0 . 6 z − 1 − 0 . 16 z − 2 u ( n ) + (1 + 1 . 1 z − 1 ) ξ ( n + 2) 0 . 82 + 0 . 176 z − 1 + z − 2 1 − 0 . 6 z − 1 − 0 . 16 z − 2 ξ ( n + 2) Second term is unknown; Last term is known. 5 Digital Control Kannan M. Moudgalya, Autumn 2007

  12. Splitting Noise into Past and Future 6.

  13. Splitting Noise into Past and Future 6. Ay ( n ) = Bu ( n − k ) + Cξ ( n )

  14. Splitting Noise into Past and Future 6. Ay ( n ) = Bu ( n − k ) + Cξ ( n ) y ( n + j ) = B Au ( n + j − k ) + C Aξ ( n + j )

  15. Splitting Noise into Past and Future 6. Ay ( n ) = Bu ( n − k ) + Cξ ( n ) y ( n + j ) = B Au ( n + j − k ) + C Aξ ( n + j ) = B E j + z − j F j � � Au ( n + j − k ) + ξ ( n + j ) A

  16. Splitting Noise into Past and Future 6. Ay ( n ) = Bu ( n − k ) + Cξ ( n ) y ( n + j ) = B Au ( n + j − k ) + C Aξ ( n + j ) = B E j + z − j F j � � Au ( n + j − k ) + ξ ( n + j ) A = B Au ( n + j − k ) + F j A ξ ( n ) + E j ξ ( n + j )

  17. Splitting Noise into Past and Future 6. Ay ( n ) = Bu ( n − k ) + Cξ ( n ) y ( n + j ) = B Au ( n + j − k ) + C Aξ ( n + j ) = B E j + z − j F j � � Au ( n + j − k ) + ξ ( n + j ) A = B Au ( n + j − k ) + F j A ξ ( n ) + E j ξ ( n + j ) = B Au ( n + j − k ) + F j Ay ( n ) − Bu ( n − k ) + E j ξ ( n + j ) A C

  18. Splitting Noise into Past and Future 6. Ay ( n ) = Bu ( n − k ) + Cξ ( n ) y ( n + j ) = B Au ( n + j − k ) + C Aξ ( n + j ) = B E j + z − j F j � � Au ( n + j − k ) + ξ ( n + j ) A = B Au ( n + j − k ) + F j A ξ ( n ) + E j ξ ( n + j ) = B Au ( n + j − k ) + F j Ay ( n ) − Bu ( n − k ) + E j ξ ( n + j ) A C = B Au ( n + j − k ) − F j B AC u ( n − k ) + F j C y ( n ) + E j ξ ( n + j )

  19. Splitting Noise into Past and Future 6. Ay ( n ) = Bu ( n − k ) + Cξ ( n ) y ( n + j ) = B Au ( n + j − k ) + C Aξ ( n + j ) = B E j + z − j F j � � Au ( n + j − k ) + ξ ( n + j ) A = B Au ( n + j − k ) + F j A ξ ( n ) + E j ξ ( n + j ) = B Au ( n + j − k ) + F j Ay ( n ) − Bu ( n − k ) + E j ξ ( n + j ) A C = B Au ( n + j − k ) − F j B AC u ( n − k ) + F j C y ( n ) + E j ξ ( n + j ) = B 1 − F j u ( n + j − k ) + F j � � C z − j C y ( n ) + E j ξ ( n + j ) A 6 Digital Control Kannan M. Moudgalya, Autumn 2007

  20. Splitting Noise into Past and Future 7.

  21. Splitting Noise into Past and Future 7. From the previous slide, y ( n + j ) = B � 1 − F j � u ( n + j − k ) + F j C z − j C y ( n ) + E j ξ ( n + j ) A

  22. Splitting Noise into Past and Future 7. From the previous slide, y ( n + j ) = B � 1 − F j � u ( n + j − k ) + F j C z − j C y ( n ) + E j ξ ( n + j ) A C A = E j + z − j F j A

  23. Splitting Noise into Past and Future 7. From the previous slide, y ( n + j ) = B � 1 − F j � u ( n + j − k ) + F j C z − j C y ( n ) + E j ξ ( n + j ) A C A = E j + z − j F j A ⇒ C A − z − j F j A = E j

  24. Splitting Noise into Past and Future 7. From the previous slide, y ( n + j ) = B � 1 − F j � u ( n + j − k ) + F j C z − j C y ( n ) + E j ξ ( n + j ) A C A = E j + z − j F j A ⇒ C A − z − j F j A = E j ⇒ C 1 − z − j F j � � = E j A C

  25. Splitting Noise into Past and Future 7. From the previous slide, y ( n + j ) = B � 1 − F j � u ( n + j − k ) + F j C z − j C y ( n ) + E j ξ ( n + j ) A C A = E j + z − j F j A ⇒ C A − z − j F j A = E j ⇒ C 1 − z − j F j � � = E j A C y ( n + j ) = E j B C u ( n + j − k ) + F j C y ( n ) + E j ξ ( n + j )

  26. Splitting Noise into Past and Future 7. From the previous slide, y ( n + j ) = B � 1 − F j � u ( n + j − k ) + F j C z − j C y ( n ) + E j ξ ( n + j ) A C A = E j + z − j F j A ⇒ C A − z − j F j A = E j ⇒ C 1 − z − j F j � � = E j A C y ( n + j ) = E j B C u ( n + j − k ) + F j C y ( n ) + E j ξ ( n + j ) Last term has only future terms.

  27. Splitting Noise into Past and Future 7. From the previous slide, y ( n + j ) = B � 1 − F j � u ( n + j − k ) + F j C z − j C y ( n ) + E j ξ ( n + j ) A C A = E j + z − j F j A ⇒ C A − z − j F j A = E j ⇒ C 1 − z − j F j � � = E j A C y ( n + j ) = E j B C u ( n + j − k ) + F j C y ( n ) + E j ξ ( n + j ) Last term has only future terms. Hence, best prediction model:

  28. Splitting Noise into Past and Future 7. From the previous slide, y ( n + j ) = B � 1 − F j � u ( n + j − k ) + F j C z − j C y ( n ) + E j ξ ( n + j ) A C A = E j + z − j F j A ⇒ C A − z − j F j A = E j ⇒ C 1 − z − j F j � � = E j A C y ( n + j ) = E j B C u ( n + j − k ) + F j C y ( n ) + E j ξ ( n + j ) Last term has only future terms. Hence, best prediction model: y ( n + j | n ) = E j B C u ( n + j − k ) + F j ˆ C y ( n )

  29. Splitting Noise into Past and Future 7. From the previous slide, y ( n + j ) = B � 1 − F j � u ( n + j − k ) + F j C z − j C y ( n ) + E j ξ ( n + j ) A C A = E j + z − j F j A ⇒ C A − z − j F j A = E j ⇒ C 1 − z − j F j � � = E j A C y ( n + j ) = E j B C u ( n + j − k ) + F j C y ( n ) + E j ξ ( n + j ) Last term has only future terms. Hence, best prediction model: y ( n + j | n ) = E j B C u ( n + j − k ) + F j ˆ C y ( n ) ˆ means estimate.

  30. Splitting Noise into Past and Future 7. From the previous slide, y ( n + j ) = B � 1 − F j � u ( n + j − k ) + F j C z − j C y ( n ) + E j ξ ( n + j ) A C A = E j + z − j F j A ⇒ C A − z − j F j A = E j ⇒ C 1 − z − j F j � � = E j A C y ( n + j ) = E j B C u ( n + j − k ) + F j C y ( n ) + E j ξ ( n + j ) Last term has only future terms. Hence, best prediction model: y ( n + j | n ) = E j B C u ( n + j − k ) + F j ˆ C y ( n ) ˆ means estimate. | n means “using measurements, available up to and including n ”. 7 Digital Control Kannan M. Moudgalya, Autumn 2007

  31. Example: Splitting C/A into E j and F j 8.

  32. Example: Splitting C/A into E j and F j 8. 1 + 0 . 5 z − 1 1 − 0 . 6 z − 1 − 0 . 16 z − 2 = C A

  33. Example: Splitting C/A into E j and F j 8. 1 + 0 . 5 z − 1 1 − 0 . 6 z − 1 − 0 . 16 z − 2 = C A = E j + z − j F j A

  34. Example: Splitting C/A into E j and F j 8. 1 + 0 . 5 z − 1 1 − 0 . 6 z − 1 − 0 . 16 z − 2 = C A = E j + z − j F j A 1 + 1 . 1 z − 1 1 − 0 . 6 z − 1 − 0 . 16 z − 2 | 1 +0 . 5 z − 1 1 − 0 . 6 z − 1 − 0 . 16 z − 2 +1 . 1 z − 1 +0 . 16 z − 2 +1 . 1 z − 1 − 0 . 66 z − 2 − 0 . 176 z − 3 +0 . 82 z − 2 +0 . 176 z − 3

  35. Example: Splitting C/A into E j and F j 8. 1 + 0 . 5 z − 1 1 − 0 . 6 z − 1 − 0 . 16 z − 2 = C A = E j + z − j F j A 1 + 1 . 1 z − 1 1 − 0 . 6 z − 1 − 0 . 16 z − 2 | 1 +0 . 5 z − 1 1 − 0 . 6 z − 1 − 0 . 16 z − 2 +1 . 1 z − 1 +0 . 16 z − 2 +1 . 1 z − 1 − 0 . 66 z − 2 − 0 . 176 z − 3 +0 . 82 z − 2 +0 . 176 z − 3 1 + 0 . 5 z − 1 0 . 82 + 0 . 176 z − 1 1 − 0 . 6 z − 1 − 0 . 16 z − 2 = (1 + 1 . 1 z − 1 ) + z − 2 1 − 0 . 6 z − 1 − 0 . 16 z − 2 8 Digital Control Kannan M. Moudgalya, Autumn 2007

  36. Another Method to Split C/A into E j and F j 9.

  37. Another Method to Split C/A into E j and F j 9. An easier method exists to solve C A = E j + z − j F j A

  38. Another Method to Split C/A into E j and F j 9. An easier method exists to solve C A = E j + z − j F j A Cross multiply by A :

  39. Another Method to Split C/A into E j and F j 9. An easier method exists to solve C A = E j + z − j F j A Cross multiply by A : C = AE j + z − j F j

  40. Another Method to Split C/A into E j and F j 9. An easier method exists to solve C A = E j + z − j F j A Cross multiply by A : C = AE j + z − j F j • C , A , z − j are known

  41. Another Method to Split C/A into E j and F j 9. An easier method exists to solve C A = E j + z − j F j A Cross multiply by A : C = AE j + z − j F j • C , A , z − j are known • E j , F j are to be calculated.

  42. Another Method to Split C/A into E j and F j 9. An easier method exists to solve C A = E j + z − j F j A Cross multiply by A : C = AE j + z − j F j • C , A , z − j are known • E j , F j are to be calculated. • Think: How would you solve it? 9 Digital Control Kannan M. Moudgalya, Autumn 2007

  43. Different Noise and Prediction Models: AR- 10. MAX

  44. Different Noise and Prediction Models: AR- 10. MAX ARMAX Model

  45. Different Noise and Prediction Models: AR- 10. MAX ARMAX Model : Ay ( n ) = Bu ( n − k ) + Cξ ( n )

  46. Different Noise and Prediction Models: AR- 10. MAX ARMAX Model : Ay ( n ) = Bu ( n − k ) + Cξ ( n ) C = E j A + z − j F j

  47. Different Noise and Prediction Models: AR- 10. MAX ARMAX Model : Ay ( n ) = Bu ( n − k ) + Cξ ( n ) C = E j A + z − j F j y ( n + j | t ) = E j B C u ( n + j − k ) + F j ˆ C y ( n ) 10 Digital Control Kannan M. Moudgalya, Autumn 2007

  48. Different Noise and Prediction Models: ARI- 11. MAX

  49. Different Noise and Prediction Models: ARI- 11. MAX ARIMAX model

  50. Different Noise and Prediction Models: ARI- 11. MAX ARIMAX model with ∆ = 1 − z − 1 :

  51. Different Noise and Prediction Models: ARI- 11. MAX ARIMAX model with ∆ = 1 − z − 1 : Ay ( n ) = Bu ( n − k ) + C ∆ ξ ( n )

  52. Different Noise and Prediction Models: ARI- 11. MAX ARIMAX model with ∆ = 1 − z − 1 : Ay ( n ) = Bu ( n − k ) + C ∆ ξ ( n ) A ∆ y ( n ) = B ∆ u ( n − k ) + Cξ ( n )

  53. Different Noise and Prediction Models: ARI- 11. MAX ARIMAX model with ∆ = 1 − z − 1 : Ay ( n ) = Bu ( n − k ) + C ∆ ξ ( n ) A ∆ y ( n ) = B ∆ u ( n − k ) + Cξ ( n ) Recall ARMAX model: Ay ( n ) = Bu ( n − k ) + Cξ ( n )

  54. Different Noise and Prediction Models: ARI- 11. MAX ARIMAX model with ∆ = 1 − z − 1 : Ay ( n ) = Bu ( n − k ) + C ∆ ξ ( n ) A ∆ y ( n ) = B ∆ u ( n − k ) + Cξ ( n ) Recall ARMAX model: Ay ( n ) = Bu ( n − k ) + Cξ ( n ) Is the solution for ARMAX model useful?

  55. Different Noise and Prediction Models: ARI- 11. MAX ARIMAX model with ∆ = 1 − z − 1 : Ay ( n ) = Bu ( n − k ) + C ∆ ξ ( n ) A ∆ y ( n ) = B ∆ u ( n − k ) + Cξ ( n ) Recall ARMAX model: Ay ( n ) = Bu ( n − k ) + Cξ ( n ) Is the solution for ARMAX model useful? A ← A ∆

  56. Different Noise and Prediction Models: ARI- 11. MAX ARIMAX model with ∆ = 1 − z − 1 : Ay ( n ) = Bu ( n − k ) + C ∆ ξ ( n ) A ∆ y ( n ) = B ∆ u ( n − k ) + Cξ ( n ) Recall ARMAX model: Ay ( n ) = Bu ( n − k ) + Cξ ( n ) Is the solution for ARMAX model useful? A ← A ∆ , B ← B ∆

  57. Different Noise and Prediction Models: ARI- 11. MAX ARIMAX model with ∆ = 1 − z − 1 : Ay ( n ) = Bu ( n − k ) + C ∆ ξ ( n ) A ∆ y ( n ) = B ∆ u ( n − k ) + Cξ ( n ) Recall ARMAX model: Ay ( n ) = Bu ( n − k ) + Cξ ( n ) Is the solution for ARMAX model useful? A ← A ∆ , B ← B ∆ C = E j A ∆ + z − j F j

  58. Different Noise and Prediction Models: ARI- 11. MAX ARIMAX model with ∆ = 1 − z − 1 : Ay ( n ) = Bu ( n − k ) + C ∆ ξ ( n ) A ∆ y ( n ) = B ∆ u ( n − k ) + Cξ ( n ) Recall ARMAX model: Ay ( n ) = Bu ( n − k ) + Cξ ( n ) Is the solution for ARMAX model useful? A ← A ∆ , B ← B ∆ C = E j A ∆ + z − j F j y ( n + j | n ) = E j B ∆ u ( n + j − k ) + F j ˆ C y ( n ) C 11 Digital Control Kannan M. Moudgalya, Autumn 2007

  59. Different Noise and Prediction Models: ARIX 12.

  60. Different Noise and Prediction Models: ARIX 12. Recall ARIMAX model from previous slide: A ∆ y ( n ) = B ∆ u ( n − k ) + Cξ ( n ) y ( n + j | n ) = E j B ∆ u ( n + j − k ) + F j ˆ C y ( n ) C

  61. Different Noise and Prediction Models: ARIX 12. Recall ARIMAX model from previous slide: A ∆ y ( n ) = B ∆ u ( n − k ) + Cξ ( n ) y ( n + j | n ) = E j B ∆ u ( n + j − k ) + F j ˆ C y ( n ) C ARIX model,

  62. Different Noise and Prediction Models: ARIX 12. Recall ARIMAX model from previous slide: A ∆ y ( n ) = B ∆ u ( n − k ) + Cξ ( n ) y ( n + j | n ) = E j B ∆ u ( n + j − k ) + F j ˆ C y ( n ) C ARIX model, obtained with C = 1 in ARIMAX:

  63. Different Noise and Prediction Models: ARIX 12. Recall ARIMAX model from previous slide: A ∆ y ( n ) = B ∆ u ( n − k ) + Cξ ( n ) y ( n + j | n ) = E j B ∆ u ( n + j − k ) + F j ˆ C y ( n ) C ARIX model, obtained with C = 1 in ARIMAX: Ay ( n ) = Bu ( n − k ) + 1 ∆ ξ ( n )

  64. Different Noise and Prediction Models: ARIX 12. Recall ARIMAX model from previous slide: A ∆ y ( n ) = B ∆ u ( n − k ) + Cξ ( n ) y ( n + j | n ) = E j B ∆ u ( n + j − k ) + F j ˆ C y ( n ) C ARIX model, obtained with C = 1 in ARIMAX: Ay ( n ) = Bu ( n − k ) + 1 ∆ ξ ( n ) 1 = E j A ∆ + z − j F j

  65. Different Noise and Prediction Models: ARIX 12. Recall ARIMAX model from previous slide: A ∆ y ( n ) = B ∆ u ( n − k ) + Cξ ( n ) y ( n + j | n ) = E j B ∆ u ( n + j − k ) + F j ˆ C y ( n ) C ARIX model, obtained with C = 1 in ARIMAX: Ay ( n ) = Bu ( n − k ) + 1 ∆ ξ ( n ) 1 = E j A ∆ + z − j F j y ( n + j | t ) = E j B ∆ u ( n + j − k ) + F j y ( n ) ˆ 12 Digital Control Kannan M. Moudgalya, Autumn 2007

  66. Minimum Variance Control: Regulation 13.

  67. Minimum Variance Control: Regulation 13. ARMAX Model: Ay ( n ) = Bu ( n − k ) + Cξ ( n )

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend