factorization theorem lecture 02 biostatistics 602
play

Factorization Theorem Lecture 02 Biostatistics 602 - Statistical - PowerPoint PPT Presentation

. . January 15th, 2013 Biostatistics 602 - Lecture 02 Hyun Min Kang January 15th, 2013 Hyun Min Kang Factorization Theorem Lecture 02 Biostatistics 602 - Statistical Inference . Summary . . Factorization Theorem Recap . . . . . .


  1. • and for all parameter points • f X x . Theorem 6.2.6 - Factorization Theorem January 15th, 2013 Biostatistics 602 - Lecture 02 Hyun Min Kang h x . g T x , . . . . Recap . . . . . . . . Factorization Theorem . Factorization Theorem Summary 6 / 27 . . . . . . . . . . . . . . . . . . . . . • Let f X ( x | θ ) denote the joint pdf or pmf of a sample X . • A statistic T ( X ) is a sufficient statistic for θ , if and only if • There exists function g ( t | θ ) and h ( x ) such that, • for all sample points x ,

  2. • f X x . . January 15th, 2013 Biostatistics 602 - Lecture 02 Hyun Min Kang h x . g T x . . . Theorem 6.2.6 - Factorization Theorem Factorization Theorem Recap . . . . . . . . 6 / 27 Factorization Theorem Summary . . . . . . . . . . . . . . . . . . . . . . • Let f X ( x | θ ) denote the joint pdf or pmf of a sample X . • A statistic T ( X ) is a sufficient statistic for θ , if and only if • There exists function g ( t | θ ) and h ( x ) such that, • for all sample points x , • and for all parameter points θ ,

  3. . Summary January 15th, 2013 Biostatistics 602 - Lecture 02 Hyun Min Kang . . Theorem 6.2.6 - Factorization Theorem . Factorization Theorem . . Factorization Theorem Recap . . . . . . . . 6 / 27 . . . . . . . . . . . . . . . . . . . . . • Let f X ( x | θ ) denote the joint pdf or pmf of a sample X . • A statistic T ( X ) is a sufficient statistic for θ , if and only if • There exists function g ( t | θ ) and h ( x ) such that, • for all sample points x , • and for all parameter points θ , • f X ( x | θ ) = g ( T ( x ) | θ ) h ( x ) .

  4. • Choose g t • and h x • Because T X is sufficient, h x does not depend on f X x Pr X x Pr X x T X T x Pr T X T x Pr X . T x Pr T X T x Pr X x T X T x g T x h x Hyun Min Kang Biostatistics 602 - Lecture 02 January 15th, 2013 x T X T x . . . . . . . . . . Recap Factorization Theorem . Summary Factorization Theorem : Proof The proof below is only for discrete distributions. . only if part . . Pr T X t Pr X x T X 7 / 27 . . . . . . . . . . . . . . . . . . . . . • Suppose that T ( X ) is a sufficient statistic

  5. • and h x • Because T X is sufficient, h x does not depend on f X x x Pr X x T X T x Pr T X T x Pr X x T X T x Pr T X T x Pr X x T X T x g T x h x Hyun Min Kang Biostatistics 602 - Lecture 02 January 15th, 2013 Pr X . . . . . . . . . . . Recap Factorization Theorem . Summary Factorization Theorem : Proof The proof below is only for discrete distributions. . only if part . . Pr X x T X T x 7 / 27 . . . . . . . . . . . . . . . . . . . . . • Suppose that T ( X ) is a sufficient statistic • Choose g ( t | θ ) = Pr ( T ( X ) = t | θ )

  6. • Because T X is sufficient, h x does not depend on f X x T x Pr X x T X T x Pr T X T x Pr X x T X Pr T X Pr X T x Pr X x T X T x g T x h x Hyun Min Kang Biostatistics 602 - Lecture 02 January 15th, 2013 x . . . . . . . . . . . Recap Factorization Theorem . Summary Factorization Theorem : Proof The proof below is only for discrete distributions. . only if part . . 7 / 27 . . . . . . . . . . . . . . . . . . . . . • Suppose that T ( X ) is a sufficient statistic • Choose g ( t | θ ) = Pr ( T ( X ) = t | θ ) • and h ( x ) = Pr ( X = x | T ( X ) = T ( x ))

  7. f X x T x Pr X x T X T x Pr T X T x Pr X x T X Pr T X Pr X T x Pr X x T X T x g T x h x Hyun Min Kang Biostatistics 602 - Lecture 02 January 15th, 2013 x . . . . . . . . . . . Recap Factorization Theorem Summary Factorization Theorem : Proof The proof below is only for discrete distributions. . only if part . . 7 / 27 . . . . . . . . . . . . . . . . . . . . . • Suppose that T ( X ) is a sufficient statistic • Choose g ( t | θ ) = Pr ( T ( X ) = t | θ ) • and h ( x ) = Pr ( X = x | T ( X ) = T ( x )) • Because T ( X ) is sufficient, h ( x ) does not depend on θ .

  8. . Pr T X x T X T x Pr T X T x Pr X x T X T x T x . Pr X x T X T x g T x h x Hyun Min Kang Biostatistics 602 - Lecture 02 January 15th, 2013 Pr X 7 / 27 Factorization Theorem : Proof The proof below is only for discrete distributions. . . . . Recap Factorization Theorem . Summary . . . only if part . . . . . . . . . . . . . . . . . . . . . . . . . • Suppose that T ( X ) is a sufficient statistic • Choose g ( t | θ ) = Pr ( T ( X ) = t | θ ) • and h ( x ) = Pr ( X = x | T ( X ) = T ( x )) • Because T ( X ) is sufficient, h ( x ) does not depend on θ . f X ( x | θ ) Pr ( X = x | θ ) =

  9. . Pr X T x Pr X x T X T x Pr T X T x x T X . T x g T x h x Hyun Min Kang Biostatistics 602 - Lecture 02 January 15th, 2013 Pr T X 7 / 27 The proof below is only for discrete distributions. Factorization Theorem . . . . . . . . . Recap . only if part . Factorization Theorem : Proof Summary . . . . . . . . . . . . . . . . . . . . . . • Suppose that T ( X ) is a sufficient statistic • Choose g ( t | θ ) = Pr ( T ( X ) = t | θ ) • and h ( x ) = Pr ( X = x | T ( X ) = T ( x )) • Because T ( X ) is sufficient, h ( x ) does not depend on θ . f X ( x | θ ) Pr ( X = x | θ ) = = Pr ( X = x ∧ T ( X ) = T ( x ) | θ )

  10. . . January 15th, 2013 Biostatistics 602 - Lecture 02 Hyun Min Kang h x g T x T x x T X Pr X T x Pr T X . . 7 / 27 only if part Factorization Theorem The proof below is only for discrete distributions. Factorization Theorem : Proof . . . . . . . . Recap . Summary . . . . . . . . . . . . . . . . . . . . . . • Suppose that T ( X ) is a sufficient statistic • Choose g ( t | θ ) = Pr ( T ( X ) = t | θ ) • and h ( x ) = Pr ( X = x | T ( X ) = T ( x )) • Because T ( X ) is sufficient, h ( x ) does not depend on θ . f X ( x | θ ) Pr ( X = x | θ ) = = Pr ( X = x ∧ T ( X ) = T ( x ) | θ ) = Pr ( T ( X ) = T ( x ) | θ ) Pr ( X = x | T ( X ) = T ( x ) , θ )

  11. . The proof below is only for discrete distributions. January 15th, 2013 Biostatistics 602 - Lecture 02 Hyun Min Kang h x g T x . . . only if part . 7 / 27 Factorization Theorem : Proof Summary . Factorization Theorem Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • Suppose that T ( X ) is a sufficient statistic • Choose g ( t | θ ) = Pr ( T ( X ) = t | θ ) • and h ( x ) = Pr ( X = x | T ( X ) = T ( x )) • Because T ( X ) is sufficient, h ( x ) does not depend on θ . f X ( x | θ ) Pr ( X = x | θ ) = = Pr ( X = x ∧ T ( X ) = T ( x ) | θ ) = Pr ( T ( X ) = T ( x ) | θ ) Pr ( X = x | T ( X ) = T ( x ) , θ ) = Pr ( T ( X ) = T ( x ) | θ ) Pr ( X = x | T ( X ) = T ( x ))

  12. . Factorization Theorem : Proof January 15th, 2013 Biostatistics 602 - Lecture 02 Hyun Min Kang . . . only if part . The proof below is only for discrete distributions. 7 / 27 Summary . Factorization Theorem Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • Suppose that T ( X ) is a sufficient statistic • Choose g ( t | θ ) = Pr ( T ( X ) = t | θ ) • and h ( x ) = Pr ( X = x | T ( X ) = T ( x )) • Because T ( X ) is sufficient, h ( x ) does not depend on θ . f X ( x | θ ) Pr ( X = x | θ ) = = Pr ( X = x ∧ T ( X ) = T ( x ) | θ ) = Pr ( T ( X ) = T ( x ) | θ ) Pr ( X = x | T ( X ) = T ( x ) , θ ) = Pr ( T ( X ) = T ( x ) | θ ) Pr ( X = x | T ( X ) = T ( x )) = g ( T ( x ) | θ ) h ( x )

  13. • Let q t • Define A t f X y . January 15th, 2013 Biostatistics 602 - Lecture 02 Hyun Min Kang y A t t Pr T X q t t . T y y be the pmf of T X . . Recap . . . . . . . . Factorization Theorem . Summary Factorization Theorem : Proof (cont’d) . if part . 8 / 27 . . . . . . . . . . . . . . . . . . . . . • Assume that the factorization f X ( x | θ ) = g ( T ( x ) | θ ) h ( x ) exists.

  14. • Define A t f X y . . January 15th, 2013 Biostatistics 602 - Lecture 02 Hyun Min Kang y A t t Pr T X q t t . T y y . . Recap . . . . . . . . Factorization Theorem if part . Summary Factorization Theorem : Proof (cont’d) . 8 / 27 . . . . . . . . . . . . . . . . . . . . . • Assume that the factorization f X ( x | θ ) = g ( T ( x ) | θ ) h ( x ) exists. • Let q ( t | θ ) be the pmf of T ( X )

  15. f X y . . January 15th, 2013 Biostatistics 602 - Lecture 02 Hyun Min Kang y A t t Pr T X q t . . if part . Factorization Theorem : Proof (cont’d) Summary . Factorization Theorem Recap . . . . . . . . 8 / 27 . . . . . . . . . . . . . . . . . . . . . • Assume that the factorization f X ( x | θ ) = g ( T ( x ) | θ ) h ( x ) exists. • Let q ( t | θ ) be the pmf of T ( X ) • Define A t = { y : T ( y ) = t } .

  16. f X y . Factorization Theorem : Proof (cont’d) January 15th, 2013 Biostatistics 602 - Lecture 02 Hyun Min Kang y A t . . . . if part Summary . . . . . . . . . 8 / 27 Recap Factorization Theorem . . . . . . . . . . . . . . . . . . . . . • Assume that the factorization f X ( x | θ ) = g ( T ( x ) | θ ) h ( x ) exists. • Let q ( t | θ ) be the pmf of T ( X ) • Define A t = { y : T ( y ) = t } . q ( t | θ ) = Pr ( T ( X ) = t | θ )

  17. . Summary January 15th, 2013 Biostatistics 602 - Lecture 02 Hyun Min Kang . . if part . Factorization Theorem : Proof (cont’d) . . Factorization Theorem . . . 8 / 27 . . . . . Recap . . . . . . . . . . . . . . . . . . . . . • Assume that the factorization f X ( x | θ ) = g ( T ( x ) | θ ) h ( x ) exists. • Let q ( t | θ ) be the pmf of T ( X ) • Define A t = { y : T ( y ) = t } . q ( t | θ ) = Pr ( T ( X ) = t | θ ) ∑ = f X ( y | θ ) y ∈ A t

  18. y A T x g T y T x h y A T x h y f X x h x h y g T x h x g T x A y . h x . Thus, T X is a sufficient statistic for , if and only if g T x h x . Hyun Min Kang Biostatistics 602 - Lecture 02 January 15th, 2013 g T x 9 / 27 Factorization Theorem : Proof (cont’d) . Factorization Theorem . Summary . . . . . if part (cont’d) . Recap . . . . . . . . . . . . . . . . . . . . . . . . . f X ( x | θ ) g ( T ( x ) | θ ) h ( x ) g ( T ( x ) | θ ) h ( x ) = = q ( T ( x ) | θ ) q ( T ( x ) | θ ) ∑ y ∈ A T ( x ) f X ( y | θ )

  19. T x h y A T x h y f X x . h x g T x A y h x , if and only if Thus, T X is a sufficient statistic for . g T x h x . Hyun Min Kang Biostatistics 602 - Lecture 02 January 15th, 2013 g T x 9 / 27 if part (cont’d) Recap . . . . Factorization Theorem . . . . Summary . . . . Factorization Theorem : Proof (cont’d) . . . . . . . . . . . . . . . . . . . . . f X ( x | θ ) g ( T ( x ) | θ ) h ( x ) g ( T ( x ) | θ ) h ( x ) = = q ( T ( x ) | θ ) q ( T ( x ) | θ ) ∑ y ∈ A T ( x ) f X ( y | θ ) g ( T ( x ) | θ ) h ( x ) = ∑ y ∈ A T ( x ) g ( T ( y ) | θ ) h ( y )

  20. A T x h y f X x . . January 15th, 2013 Biostatistics 602 - Lecture 02 Hyun Min Kang h x . g T x , if and only if Thus, T X is a sufficient statistic for h x . . 9 / 27 if part (cont’d) . Factorization Theorem . Recap . . . . . . Summary Factorization Theorem : Proof (cont’d) . . . . . . . . . . . . . . . . . . . . . . . f X ( x | θ ) g ( T ( x ) | θ ) h ( x ) g ( T ( x ) | θ ) h ( x ) = = q ( T ( x ) | θ ) q ( T ( x ) | θ ) ∑ y ∈ A T ( x ) f X ( y | θ ) g ( T ( x ) | θ ) h ( x ) g ( T ( x ) | θ ) h ( x ) = y ∈ A T ( x ) g ( T ( y ) | θ ) h ( y ) = ∑ g ( T ( x ) | θ ) ∑ A y ∈ T ( x ) h ( y )

  21. f X x . if part (cont’d) January 15th, 2013 Biostatistics 602 - Lecture 02 Hyun Min Kang h x . g T x , if and only if Thus, T X is a sufficient statistic for . . . 9 / 27 . Factorization Theorem : Proof (cont’d) Summary . . . . . . . . . Recap Factorization Theorem . . . . . . . . . . . . . . . . . . . . . f X ( x | θ ) g ( T ( x ) | θ ) h ( x ) g ( T ( x ) | θ ) h ( x ) = = q ( T ( x ) | θ ) q ( T ( x ) | θ ) ∑ y ∈ A T ( x ) f X ( y | θ ) g ( T ( x ) | θ ) h ( x ) g ( T ( x ) | θ ) h ( x ) = y ∈ A T ( x ) g ( T ( y ) | θ ) h ( y ) = ∑ g ( T ( x ) | θ ) ∑ A y ∈ T ( x ) h ( y ) h ( x ) = ∑ A T ( x ) h ( y )

  22. . Factorization Theorem : Proof (cont’d) January 15th, 2013 Biostatistics 602 - Lecture 02 Hyun Min Kang . . . if part (cont’d) . 9 / 27 Summary . Factorization Theorem Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . f X ( x | θ ) g ( T ( x ) | θ ) h ( x ) g ( T ( x ) | θ ) h ( x ) = = q ( T ( x ) | θ ) q ( T ( x ) | θ ) ∑ y ∈ A T ( x ) f X ( y | θ ) g ( T ( x ) | θ ) h ( x ) g ( T ( x ) | θ ) h ( x ) = y ∈ A T ( x ) g ( T ( y ) | θ ) h ( y ) = ∑ g ( T ( x ) | θ ) ∑ A y ∈ T ( x ) h ( y ) h ( x ) = ∑ A T ( x ) h ( y ) Thus, T ( X ) is a sufficient statistic for θ , if and only if f X ( x | θ ) = g ( T ( x ) | θ ) h ( x ) .

  23. Then f X x . t n i x i x Because T X X n , we have g t Pr T X exp n n t h x g T x holds, and T X X is a sufficient statistic for by the factorization theorem. Hyun Min Kang Biostatistics 602 - Lecture 02 January 15th, 2013 exp h x . Example 6.2.7 - Factorization of Normal Distribution . . . . . . . . Recap Factorization Theorem . Summary From Example 6.2.4, we know that . We can define h x , so that it does not depend on 10 / 27 . . . . . . . . . . . . . . . . . . . . . i =1 ( x i − x ) 2 + n ( x − µ ) 2 ( ∑ n ) (2 πσ 2 ) − n /2 exp f X ( x | µ ) = − 2 σ 2

  24. Then f X x . X n , we have g t Pr T X t exp n t h x g T x . holds, and T X X is a sufficient statistic for by the factorization theorem. Hyun Min Kang Biostatistics 602 - Lecture 02 January 15th, 2013 Because T X 10 / 27 From Example 6.2.4, we know that . . . . . . . . Recap Factorization Theorem . Summary Example 6.2.7 - Factorization of Normal Distribution . . . . . . . . . . . . . . . . . . . . . i =1 ( x i − x ) 2 + n ( x − µ ) 2 ( ∑ n ) (2 πσ 2 ) − n /2 exp f X ( x | µ ) = − 2 σ 2 We can define h ( x ) , so that it does not depend on µ . i =1 ( x i − x ) 2 ( ∑ n ) (2 πσ 2 ) − n /2 exp h ( x ) = − 2 σ 2

  25. Then f X x . From Example 6.2.4, we know that January 15th, 2013 Biostatistics 602 - Lecture 02 Hyun Min Kang by the factorization theorem. statistic for X is a sufficient holds, and T X h x g T x . 10 / 27 Example 6.2.7 - Factorization of Normal Distribution . Recap . . . . . . . . Summary Factorization Theorem . . . . . . . . . . . . . . . . . . . . . i =1 ( x i − x ) 2 + n ( x − µ ) 2 ( ∑ n ) (2 πσ 2 ) − n /2 exp f X ( x | µ ) = − 2 σ 2 We can define h ( x ) , so that it does not depend on µ . i =1 ( x i − x ) 2 ( ∑ n ) (2 πσ 2 ) − n /2 exp h ( x ) = − 2 σ 2 Because T ( X ) = X ∼ N ( µ, σ 2 / n ) , we have − n ( t − µ ) 2 ( ) g ( t | µ ) = Pr ( T ( X ) = t | µ ) = exp 2 σ 2

  26. . . January 15th, 2013 Biostatistics 602 - Lecture 02 Hyun Min Kang . From Example 6.2.4, we know that Example 6.2.7 - Factorization of Normal Distribution Summary 10 / 27 Factorization Theorem . . . . Recap . . . . . . . . . . . . . . . . . . . . . . . . . i =1 ( x i − x ) 2 + n ( x − µ ) 2 ( ∑ n ) (2 πσ 2 ) − n /2 exp f X ( x | µ ) = − 2 σ 2 We can define h ( x ) , so that it does not depend on µ . i =1 ( x i − x ) 2 ( ∑ n ) (2 πσ 2 ) − n /2 exp h ( x ) = − 2 σ 2 Because T ( X ) = X ∼ N ( µ, σ 2 / n ) , we have − n ( t − µ ) 2 ( ) g ( t | µ ) = Pr ( T ( X ) = t | µ ) = exp 2 σ 2 Then f X ( x | µ ) = h ( x ) g ( T ( x ) | µ ) holds, and T ( X ) = X is a sufficient statistic for µ by the factorization theorem.

  27. . Example 6.2.8 - Uniform Sufficient Statistic January 15th, 2013 Biostatistics 602 - Lecture 02 Hyun Min Kang otherwise . . Problem . . Summary . . . . . 11 / 27 Recap . . . . Factorization Theorem . . . . . . . . . . . . . . . . . . . . . • X 1 , · · · , X n are iid observations uniformly drawn from { 1 , · · · , θ } . { 1 x = 1 , 2 , · · · , θ f X ( x | θ ) θ = 0 • Find a sufficient statistic for θ using factorization theorem.

  28. . . Define h x . . . . . . . h x otherwise x n otherwise Note that h x is independent of . Hyun Min Kang Biostatistics 602 - Lecture 02 January 15th, 2013 . 12 / 27 . . . . . . . . . . Recap Factorization Theorem Summary Example 6.2.8 - Uniform Sufficient Statistic . Joint pmf . . . . . . . . . . . . . . . . . . . . . . . The joint pmf of X 1 , · · · , X n is { θ − n x ∈ { 1 , 2 , · · · , θ } n f X ( x | θ ) = 0

  29. . Joint pmf January 15th, 2013 Biostatistics 602 - Lecture 02 Hyun Min Kang otherwise . . . otherwise . . . 12 / 27 . Factorization Theorem . . . . . . . . Example 6.2.8 - Uniform Sufficient Statistic Recap Summary . . . . . . . . . . . . . . . . . . . . . . The joint pmf of X 1 , · · · , X n is { θ − n x ∈ { 1 , 2 , · · · , θ } n f X ( x | θ ) = 0 Define h ( x ) { 1 x ∈ { 1 , 2 , · · · } n h ( x ) = 0 Note that h ( x ) is independent of θ .

  30. • f X x • Thus, by the factorization theorem, T X max i X i is a sufficient . Putting things together . . . . . . . . otherwise g T x h x holds. statistic for . Hyun Min Kang Biostatistics 602 - Lecture 02 January 15th, 2013 . 13 / 27 . Summary . . . . . . . . Recap Factorization Theorem . Example 6.2.8 - Uniform Sufficient Statistic . . . i . . . . . . . . . . . . . . . . . . . . . Define T ( X ) and g ( t | θ ) Define T ( X ) = max i x i , then { θ − n t ≤ θ g ( t | θ ) = Pr ( T ( x ) = t | θ ) = Pr ( max x i = t | θ ) = 0

  31. • Thus, by the factorization theorem, T X max i X i is a sufficient . . January 15th, 2013 Biostatistics 602 - Lecture 02 Hyun Min Kang . statistic for . . Putting things together . otherwise . i . Summary . . . . . . . . Recap Factorization Theorem . Example 6.2.8 - Uniform Sufficient Statistic . 13 / 27 . . . . . . . . . . . . . . . . . . . . . Define T ( X ) and g ( t | θ ) Define T ( X ) = max i x i , then { θ − n t ≤ θ g ( t | θ ) = Pr ( T ( x ) = t | θ ) = Pr ( max x i = t | θ ) = 0 • f X ( x | θ ) = g ( T ( x ) | θ ) h ( x ) holds.

  32. . . January 15th, 2013 Biostatistics 602 - Lecture 02 Hyun Min Kang . . Putting things together . otherwise i . . 13 / 27 Recap Example 6.2.8 - Uniform Sufficient Statistic . Summary . . . . . . . . Factorization Theorem . . . . . . . . . . . . . . . . . . . . . . Define T ( X ) and g ( t | θ ) Define T ( X ) = max i x i , then { θ − n t ≤ θ g ( t | θ ) = Pr ( T ( x ) = t | θ ) = Pr ( max x i = t | θ ) = 0 • f X ( x | θ ) = g ( T ( x ) | θ ) h ( x ) holds. • Thus, by the factorization theorem, T ( X ) = max i X i is a sufficient statistic for θ .

  33. . Factorization Theorem January 15th, 2013 Biostatistics 602 - Lecture 02 Hyun Min Kang Summary . 14 / 27 . Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Example of h ( x ) when θ = 5 , n = 1

  34. . Factorization Theorem January 15th, 2013 Biostatistics 602 - Lecture 02 Hyun Min Kang Summary . 15 / 27 . Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Example of g ( x ) when θ = 5 , n = 1

  35. . Factorization Theorem January 15th, 2013 Biostatistics 602 - Lecture 02 Hyun Min Kang Summary . 16 / 27 . Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Example of f ( x ) when θ = 5 , n = 1

  36. f X x f X x f X x x i , max i x i is a sufficient statistic. I T x n I T x I x i i i n x i i n . I I x i can be factorized into g t n I t and h x n i I and T x Hyun Min Kang Biostatistics 602 - Lecture 02 January 15th, 2013 max I x i . . . . . . . . . Recap Factorization Theorem . Summary Alternative Solution - Using Indicator Functions • , and n i n i n x i I i x i I I i n n x i 17 / 27 . . . . . . . . . . . . . . . . . . . . . • I A ( x ) = 1 if x ∈ A , and I A ( x ) = 0 otherwise.

  37. f X x f X x f X x x i , max i x i is a sufficient statistic. . I n I T x I x i n i n x i i T x x i i I I can be factorized into g t n I t and h x n i I and T x Hyun Min Kang Biostatistics 602 - Lecture 02 January 15th, 2013 max x i . I . . . . . . . . Recap Factorization Theorem . Summary Alternative Solution - Using Indicator Functions n i I n i n x i I i x i x i I i n n 17 / 27 . . . . . . . . . . . . . . . . . . . . . • I A ( x ) = 1 if x ∈ A , and I A ( x ) = 0 otherwise. • N = { 1 , 2 , · · · } , and N θ = { 1 , 2 , · · · , θ }

  38. f X x f X x x i , max i x i is a sufficient statistic. . x i n I T x I i I n n x i i max T x I i x i x i can be factorized into g t n I t and h x n i I and T x Hyun Min Kang Biostatistics 602 - Lecture 02 January 15th, 2013 I I . n . . . . . . . . Recap Factorization Theorem . Summary Alternative Solution - Using Indicator Functions i 17 / 27 n i n x i I n . . . . . . . . . . . . . . . . . . . . . • I A ( x ) = 1 if x ∈ A , and I A ( x ) = 0 otherwise. • N = { 1 , 2 , · · · } , and N θ = { 1 , 2 , · · · , θ } 1 ∏ ∏ f X ( x | θ ) = θ I N θ ( x i ) = θ − n I N θ ( x i ) i =1 i =1

  39. f X x f X x x i , max i x i is a sufficient statistic. . i x i n I T x n i I x i n I can be factorized into g t . t and h x n i I and T x Hyun Min Kang Biostatistics 602 - Lecture 02 January 15th, 2013 max 17 / 27 n Recap Summary . n Factorization Theorem n . . . . . . . . Alternative Solution - Using Indicator Functions . . . . . . . . . . . . . . . . . . . . . • I A ( x ) = 1 if x ∈ A , and I A ( x ) = 0 otherwise. • N = { 1 , 2 , · · · } , and N θ = { 1 , 2 , · · · , θ } 1 ∏ ∏ f X ( x | θ ) = θ I N θ ( x i ) = θ − n I N θ ( x i ) i =1 i =1 ( n ) ( n ) [ ] ∏ ∏ ∏ I N θ ( x i ) = I N ( x i ) = I N ( x i ) I N θ [ T ( x )] I N θ i =1 i =1 i =1

  40. f X x x i , max i x i is a sufficient statistic. . n I . max i x i n can be factorized into g t n t and h x n i I and T x Hyun Min Kang Biostatistics 602 - Lecture 02 January 15th, 2013 n 17 / 27 . Recap . Factorization Theorem Summary . . . n Alternative Solution - Using Indicator Functions . . . . . . . . . . . . . . . . . . . . . . . . . • I A ( x ) = 1 if x ∈ A , and I A ( x ) = 0 otherwise. • N = { 1 , 2 , · · · } , and N θ = { 1 , 2 , · · · , θ } 1 ∏ ∏ f X ( x | θ ) = θ I N θ ( x i ) = θ − n I N θ ( x i ) i =1 i =1 ( n ) ( n ) [ ] ∏ ∏ ∏ I N θ ( x i ) = I N ( x i ) = I N ( x i ) I N θ [ T ( x )] I N θ i =1 i =1 i =1 ∏ θ − n I N θ [ T ( x )] f X ( x | θ ) = I N ( x i ) i =1

  41. . n January 15th, 2013 Biostatistics 602 - Lecture 02 Hyun Min Kang n x i i max . n n 17 / 27 . . . Alternative Solution - Using Indicator Functions . . . . . . Recap Summary Factorization Theorem . . . . . . . . . . . . . . . . . . . . . • I A ( x ) = 1 if x ∈ A , and I A ( x ) = 0 otherwise. • N = { 1 , 2 , · · · } , and N θ = { 1 , 2 , · · · , θ } 1 ∏ ∏ f X ( x | θ ) = θ I N θ ( x i ) = θ − n I N θ ( x i ) i =1 i =1 ( n ) ( n ) [ ] ∏ ∏ ∏ I N θ ( x i ) = I N ( x i ) = I N ( x i ) I N θ [ T ( x )] I N θ i =1 i =1 i =1 ∏ θ − n I N θ [ T ( x )] f X ( x | θ ) = I N ( x i ) i =1 f X ( x | θ ) can be factorized into g ( t | θ ) = θ − n I N θ ( t ) and h ( x ) = ∏ n i =1 I N ( x i ) , and T ( x ) = max i x i is a sufficient statistic.

  42. • Both • The parameter is a vector : • The problem is to use the Factorization Theorem to find the sufficient • Propose T X • Use Factorization Theorem to decompose f X x . . . . . . . . . T . X T X as sufficient statistic for and . . Hyun Min Kang Biostatistics 602 - Lecture 02 January 15th, 2013 How to solve it statistics for . . . . . . . . . . Recap Factorization Theorem . Summary Example 6.2.9 - Normal Sufficient Statistic . Problem . . i.i.d. and are unknown . 18 / 27 . . . . . . . . . . . . . . . . . . . . . ∼ N ( µ, σ 2 ) • X 1 , · · · , X n

  43. • The parameter is a vector : • The problem is to use the Factorization Theorem to find the sufficient • Propose T X • Use Factorization Theorem to decompose f X x . . . . . . . . X T How to solve it T X as sufficient statistic for and . . Hyun Min Kang Biostatistics 602 - Lecture 02 January 15th, 2013 . . . . . . . . . . . . Recap Factorization Theorem . Summary Example 6.2.9 - Normal Sufficient Statistic . Problem . . i.i.d. . statistics for 18 / 27 . . . . . . . . . . . . . . . . . . . . . ∼ N ( µ, σ 2 ) • X 1 , · · · , X n • Both µ and σ 2 are unknown

  44. • The problem is to use the Factorization Theorem to find the sufficient • Propose T X • Use Factorization Theorem to decompose f X x . T . . . . . . . X How to solve it T X as sufficient statistic for and . . Hyun Min Kang Biostatistics 602 - Lecture 02 January 15th, 2013 . . . . . . . . . . . . Recap Factorization Theorem . Summary Example 6.2.9 - Normal Sufficient Statistic . Problem . . i.i.d. statistics for 18 / 27 . . . . . . . . . . . . . . . . . . . . . ∼ N ( µ, σ 2 ) • X 1 , · · · , X n • Both µ and σ 2 are unknown • The parameter is a vector : θ = ( µ, σ 2 ) .

  45. • Propose T X • Use Factorization Theorem to decompose f X x . T . . . . . . . T X How to solve it X as sufficient statistic for and . . Hyun Min Kang Biostatistics 602 - Lecture 02 January 15th, 2013 . . . Summary . . . . . . . . Recap Factorization Theorem . Example 6.2.9 - Normal Sufficient Statistic . Problem . . i.i.d. 18 / 27 . . . . . . . . . . . . . . . . . . . . . ∼ N ( µ, σ 2 ) • X 1 , · · · , X n • Both µ and σ 2 are unknown • The parameter is a vector : θ = ( µ, σ 2 ) . • The problem is to use the Factorization Theorem to find the sufficient statistics for θ .

  46. • Use Factorization Theorem to decompose f X x . . January 15th, 2013 Biostatistics 602 - Lecture 02 Hyun Min Kang . . . How to solve it . i.i.d. . . 18 / 27 Problem . . . . . . . . . Recap Factorization Theorem Summary . Example 6.2.9 - Normal Sufficient Statistic . . . . . . . . . . . . . . . . . . . . . ∼ N ( µ, σ 2 ) • X 1 , · · · , X n • Both µ and σ 2 are unknown • The parameter is a vector : θ = ( µ, σ 2 ) . • The problem is to use the Factorization Theorem to find the sufficient statistics for θ . • Propose T ( X ) = ( T 1 ( X ) , T 2 ( X )) as sufficient statistic for µ and σ 2 .

  47. . Problem January 15th, 2013 Biostatistics 602 - Lecture 02 Hyun Min Kang . . How to solve it . i.i.d. . . . 18 / 27 . Recap Summary . Factorization Theorem . . . . . . . . Example 6.2.9 - Normal Sufficient Statistic . . . . . . . . . . . . . . . . . . . . . ∼ N ( µ, σ 2 ) • X 1 , · · · , X n • Both µ and σ 2 are unknown • The parameter is a vector : θ = ( µ, σ 2 ) . • The problem is to use the Factorization Theorem to find the sufficient statistics for θ . • Propose T ( X ) = ( T 1 ( X ) , T 2 ( X )) as sufficient statistic for µ and σ 2 . • Use Factorization Theorem to decompose f X ( x | µ, σ 2 ) .

  48. . Problem January 15th, 2013 Biostatistics 602 - Lecture 02 Hyun Min Kang . . How to solve it . i.i.d. . . . 18 / 27 . Recap Summary . Factorization Theorem . . . . . . . . Example 6.2.9 - Normal Sufficient Statistic . . . . . . . . . . . . . . . . . . . . . ∼ N ( µ, σ 2 ) • X 1 , · · · , X n • Both µ and σ 2 are unknown • The parameter is a vector : θ = ( µ, σ 2 ) . • The problem is to use the Factorization Theorem to find the sufficient statistics for θ . • Propose T ( X ) = ( T 1 ( X ) , T 2 ( X )) as sufficient statistic for µ and σ 2 . • Use Factorization Theorem to decompose f X ( x | µ, σ 2 ) .

  49. . x exp n i x i n exp n i x i x n . exp n i x i x n x Hyun Min Kang Biostatistics 602 - Lecture 02 January 15th, 2013 n 19 / 27 Summary . . . . . . . . Recap n Factorization Theorem . . . . Example 6.2.9 - Solution . . . . . . . . . . . . . . . . . . . . . Decomposing f X ( x | µ, σ 2 ) - Similarly to Example 6.2.4 − ( x i − µ ) 2 ( ) 1 ∏ f X ( x | µ, σ 2 ) √ = 2 σ 2 2 πσ 2 exp i =1

  50. . exp n exp n i x i x x n n . i x i x n x Hyun Min Kang Biostatistics 602 - Lecture 02 January 15th, 2013 n 19 / 27 . Recap n Example 6.2.9 - Solution Summary . Factorization Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Decomposing f X ( x | µ, σ 2 ) - Similarly to Example 6.2.4 − ( x i − µ ) 2 ( ) 1 ∏ f X ( x | µ, σ 2 ) √ = 2 σ 2 2 πσ 2 exp i =1 ( ) ( x i − µ ) 2 (2 πσ 2 ) − n /2 exp ∑ = − 2 σ 2 i =1

  51. . n January 15th, 2013 Biostatistics 602 - Lecture 02 Hyun Min Kang x n x x i i n exp n n n . 19 / 27 Summary . . . . . . . Example 6.2.9 - Solution . . Recap Factorization Theorem . . . . . . . . . . . . . . . . . . . . . . . . Decomposing f X ( x | µ, σ 2 ) - Similarly to Example 6.2.4 − ( x i − µ ) 2 ( ) 1 ∏ f X ( x | µ, σ 2 ) √ = 2 σ 2 2 πσ 2 exp i =1 ( ) ( x i − µ ) 2 (2 πσ 2 ) − n /2 exp ∑ = − 2 σ 2 i =1 ( ) ( x i − x + x − µ ) 2 (2 πσ 2 ) − n /2 exp ∑ = − 2 σ 2 i =1

  52. . . January 15th, 2013 Biostatistics 602 - Lecture 02 Hyun Min Kang n n n n . n . 19 / 27 . Recap . . . . Factorization Theorem . . . . . Example 6.2.9 - Solution Summary . . . . . . . . . . . . . . . . . . . . . Decomposing f X ( x | µ, σ 2 ) - Similarly to Example 6.2.4 − ( x i − µ ) 2 ( ) 1 ∏ f X ( x | µ, σ 2 ) √ = 2 σ 2 2 πσ 2 exp i =1 ( ) ( x i − µ ) 2 (2 πσ 2 ) − n /2 exp ∑ = − 2 σ 2 i =1 ( ) ( x i − x + x − µ ) 2 (2 πσ 2 ) − n /2 exp ∑ = − 2 σ 2 i =1 ( ) − 1 ( x i − x ) 2 − (2 πσ 2 ) − n /2 exp ∑ 2 σ 2 ( x − µ ) 2 = 2 σ 2 i =1

  53. . n T X T X T X T x x n i . x i T x n i x i x Hyun Min Kang Biostatistics 602 - Lecture 02 January 15th, 2013 n 20 / 27 Propose a sufficient statistic . . . . . Summary Example 6.2.9 - Solution . Recap . . . . . . n Factorization Theorem . . . . . . . . . . . . . . . . . . . . . ( ) − 1 ( x i − x ) 2 − f X ( x | µ, σ 2 ) (2 πσ 2 ) − n /2 exp ∑ 2 σ 2 ( x − µ ) 2 = 2 σ 2 i =1

  54. . x i n T x x n n i T n x n i x i x Hyun Min Kang Biostatistics 602 - Lecture 02 January 15th, 2013 . 20 / 27 . Recap Propose a sufficient statistic Summary . . Factorization Theorem . Example 6.2.9 - Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( ) − 1 ( x i − x ) 2 − f X ( x | µ, σ 2 ) (2 πσ 2 ) − n /2 exp ∑ 2 σ 2 ( x − µ ) 2 = 2 σ 2 i =1 T ( X ) = ( T 1 ( X ) , T 2 ( X ))

  55. . n January 15th, 2013 Biostatistics 602 - Lecture 02 Hyun Min Kang x x i i n x T x i n n n . 20 / 27 . . Summary Recap . Example 6.2.9 - Solution . . Propose a sufficient statistic . . . . Factorization Theorem . . . . . . . . . . . . . . . . . . . . . . . . ( ) − 1 ( x i − x ) 2 − f X ( x | µ, σ 2 ) (2 πσ 2 ) − n /2 exp ∑ 2 σ 2 ( x − µ ) 2 = 2 σ 2 i =1 T ( X ) = ( T 1 ( X ) , T 2 ( X )) x = 1 ∑ T 1 ( x ) = i =1

  56. . . January 15th, 2013 Biostatistics 602 - Lecture 02 Hyun Min Kang n x i n n n . n . 20 / 27 Propose a sufficient statistic Recap . . . . . . . . . Factorization Theorem . Summary Example 6.2.9 - Solution . . . . . . . . . . . . . . . . . . . . . ( ) − 1 ( x i − x ) 2 − f X ( x | µ, σ 2 ) (2 πσ 2 ) − n /2 exp ∑ 2 σ 2 ( x − µ ) 2 = 2 σ 2 i =1 T ( X ) = ( T 1 ( X ) , T 2 ( X )) x = 1 ∑ T 1 ( x ) = i =1 ∑ ( x i − x ) 2 T 2 ( x ) = i =1

  57. . . January 15th, 2013 Biostatistics 602 - Lecture 02 Hyun Min Kang n x i n n n . n . 20 / 27 Propose a sufficient statistic Recap . . . . . . . . . Factorization Theorem . Summary Example 6.2.9 - Solution . . . . . . . . . . . . . . . . . . . . . ( ) − 1 ( x i − x ) 2 − f X ( x | µ, σ 2 ) (2 πσ 2 ) − n /2 exp ∑ 2 σ 2 ( x − µ ) 2 = 2 σ 2 i =1 T ( X ) = ( T 1 ( X ) , T 2 ( X )) x = 1 ∑ T 1 ( x ) = i =1 ∑ ( x i − x ) 2 T 2 ( x ) = i =1

  58. f X x . T n exp t n t g T x T x h x Thus, T X x g t T x x n i x i x is a sufficient statistic for . Hyun Min Kang Biostatistics 602 - Lecture 02 January 15th, 2013 t h x . . . . . . . . . . Recap Factorization Theorem . Summary Example 6.2.9 - Solution . . n n 21 / 27 . . . . . . . . . . . . . . . . . . . . . Factorize f X ( x | µ, σ 2 ) ( ) − 1 ( x i − x ) 2 − f X ( x | µ, σ 2 ) (2 πσ 2 ) − n /2 exp ∑ 2 σ 2 ( x − µ ) 2 = 2 σ 2 i =1

  59. f X x . T n exp t n t g T x T x h x Thus, T X x g t T x x n i x i x is a sufficient statistic for . Hyun Min Kang Biostatistics 602 - Lecture 02 January 15th, 2013 t 21 / 27 . . . . . . . . . . Recap Factorization Theorem . Summary Example 6.2.9 - Solution . . n n . . . . . . . . . . . . . . . . . . . . . Factorize f X ( x | µ, σ 2 ) ( ) − 1 ( x i − x ) 2 − f X ( x | µ, σ 2 ) (2 πσ 2 ) − n /2 exp ∑ 2 σ 2 ( x − µ ) 2 = 2 σ 2 i =1 h ( x ) = 1

  60. f X x . T n g T x T x h x Thus, T X T x x n x n i x i x is a sufficient statistic for . Hyun Min Kang Biostatistics 602 - Lecture 02 January 15th, 2013 . 21 / 27 . . . n . Example 6.2.9 - Solution Summary Factorization Theorem Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Factorize f X ( x | µ, σ 2 ) ( ) − 1 ( x i − x ) 2 − f X ( x | µ, σ 2 ) (2 πσ 2 ) − n /2 exp ∑ 2 σ 2 ( x − µ ) 2 = 2 σ 2 i =1 h ( x ) = 1 ( − 1 ) g ( t 1 , t 2 | µ, σ 2 ) (2 πσ 2 ) − n /2 exp 2 σ 2 ( t 1 − µ ) 2 = 2 σ 2 t 2 −

  61. . n . n Thus, T X T x T x x i n x i x is a sufficient statistic for . Hyun Min Kang Biostatistics 602 - Lecture 02 January 15th, 2013 n 21 / 27 . . . . . . . Example 6.2.9 - Solution Summary . Factorization Theorem Recap . . . . . . . . . . . . . . . . . . . . . . . . . Factorize f X ( x | µ, σ 2 ) ( ) − 1 ( x i − x ) 2 − f X ( x | µ, σ 2 ) (2 πσ 2 ) − n /2 exp ∑ 2 σ 2 ( x − µ ) 2 = 2 σ 2 i =1 h ( x ) = 1 ( − 1 ) g ( t 1 , t 2 | µ, σ 2 ) (2 πσ 2 ) − n /2 exp 2 σ 2 ( t 1 − µ ) 2 = 2 σ 2 t 2 − f X ( x | µ, σ 2 ) g ( T 1 ( x ) , T 2 ( x ) | µ, σ 2 ) h ( x ) =

  62. . . January 15th, 2013 Biostatistics 602 - Lecture 02 Hyun Min Kang is a sufficient statistic n . n . . n Example 6.2.9 - Solution Recap . . . . . . . . Summary 21 / 27 . Factorization Theorem . . . . . . . . . . . . . . . . . . . . . Factorize f X ( x | µ, σ 2 ) ( ) − 1 ( x i − x ) 2 − f X ( x | µ, σ 2 ) (2 πσ 2 ) − n /2 exp ∑ 2 σ 2 ( x − µ ) 2 = 2 σ 2 i =1 h ( x ) = 1 ( − 1 ) g ( t 1 , t 2 | µ, σ 2 ) (2 πσ 2 ) − n /2 exp 2 σ 2 ( t 1 − µ ) 2 = 2 σ 2 t 2 − f X ( x | µ, σ 2 ) g ( T 1 ( x ) , T 2 ( x ) | µ, σ 2 ) h ( x ) = i =1 ( x i − x ) 2 ) ( x , ∑ n Thus, T ( X ) = ( T 1 ( x ) , T 2 ( x )) = for θ = ( µ, σ 2 ) .

  63. Rewriting f X x f X x f X x . x i if x otherwise I x n i I I . x x n I min i x i max i x i Hyun Min Kang Biostatistics 602 - Lecture 02 January 15th, 2013 . . . . . . . . . . . . Recap Factorization Theorem . Summary One parameter, two-dimensional sufficient statistic Problem . . . i.i.d. . . . . . 22 / 27 . . . . . . . . . . . . . . . . . . . . . Assume X 1 , · · · , X n ∼ Uniform ( θ, θ + 1) , −∞ < θ < ∞ . Find a sufficient statistic for θ .

  64. f X x . x n otherwise n i I x i I x I . min i x i max i x i Hyun Min Kang Biostatistics 602 - Lecture 02 January 15th, 2013 . 22 / 27 . . . . . . . . . . Recap Factorization Theorem . Summary One parameter, two-dimensional sufficient statistic Problem . . i.i.d. . . . . . . . . . . . . . . . . . . . . . . Assume X 1 , · · · , X n ∼ Uniform ( θ, θ + 1) , −∞ < θ < ∞ . Find a sufficient statistic for θ . Rewriting f X ( x | θ ) { 1 if θ < x < θ + 1 f X ( x | θ ) = = I ( θ < x < θ + 1) 0

  65. . I . . otherwise n I x x n min . i x i max i x i Hyun Min Kang Biostatistics 602 - Lecture 02 January 15th, 2013 . 22 / 27 Factorization Theorem . . Summary One parameter, two-dimensional sufficient statistic . Problem Recap . . . . . . . . . i.i.d. . . . . . . . . . . . . . . . . . . . . . Assume X 1 , · · · , X n ∼ Uniform ( θ, θ + 1) , −∞ < θ < ∞ . Find a sufficient statistic for θ . Rewriting f X ( x | θ ) { 1 if θ < x < θ + 1 f X ( x | θ ) = = I ( θ < x < θ + 1) 0 ∏ f X ( x | θ ) = I ( θ < x i < θ + 1) i =1

  66. . i . . otherwise n I min x i . max i x i Hyun Min Kang Biostatistics 602 - Lecture 02 January 15th, 2013 . 22 / 27 i.i.d. . . . . . . . . . Recap Factorization Theorem . Summary One parameter, two-dimensional sufficient statistic . . Problem . . . . . . . . . . . . . . . . . . . . . Assume X 1 , · · · , X n ∼ Uniform ( θ, θ + 1) , −∞ < θ < ∞ . Find a sufficient statistic for θ . Rewriting f X ( x | θ ) { 1 if θ < x < θ + 1 f X ( x | θ ) = = I ( θ < x < θ + 1) 0 ∏ f X ( x | θ ) = I ( θ < x i < θ + 1) i =1 I ( θ < x 1 < θ + 1 , · · · , θ < x n < θ + 1) =

  67. . i.i.d. January 15th, 2013 Biostatistics 602 - Lecture 02 Hyun Min Kang i i min I n otherwise . . . . 22 / 27 . Summary . . . . . . . . Recap . Factorization Theorem . One parameter, two-dimensional sufficient statistic Problem . . . . . . . . . . . . . . . . . . . . . . Assume X 1 , · · · , X n ∼ Uniform ( θ, θ + 1) , −∞ < θ < ∞ . Find a sufficient statistic for θ . Rewriting f X ( x | θ ) { 1 if θ < x < θ + 1 f X ( x | θ ) = = I ( θ < x < θ + 1) 0 ∏ f X ( x | θ ) = I ( θ < x i < θ + 1) i =1 I ( θ < x 1 < θ + 1 , · · · , θ < x n < θ + 1) = ( ) = x i > θ ∧ max x i < θ + 1

  68. f X x min i x i max i x i is a sufficient statistic . T I t t I min i x i max i g T x x g t h x Thus, T x T x T x for . Hyun Min Kang Biostatistics 602 - Lecture 02 January 15th, 2013 t x i . Factorization . . . . . . . . Recap Factorization Theorem . Summary One parameter, two-dimensional sufficient statistic . . i . T x min i x i T x max 23 / 27 . . . . . . . . . . . . . . . . . . . . . h ( x ) = 1

  69. f X x min i x i max i x i is a sufficient statistic . T I t t I min i x i max i g T x x g t h x Thus, T x T x T x for . Hyun Min Kang Biostatistics 602 - Lecture 02 January 15th, 2013 t x i . Factorization . . . . . . . . Recap Factorization Theorem . Summary One parameter, two-dimensional sufficient statistic . . i . min i x i max 23 / 27 . . . . . . . . . . . . . . . . . . . . . h ( x ) = 1 T 1 ( x ) = T 2 ( x ) =

  70. f X x min i x i max i x i is a sufficient statistic . x I min i x i max i g T x T h x . Thus, T x T x T x for . Hyun Min Kang Biostatistics 602 - Lecture 02 January 15th, 2013 x i i max Factorization . . . . . . . . Recap Factorization Theorem . Summary One parameter, two-dimensional sufficient statistic . . . min i x i 23 / 27 . . . . . . . . . . . . . . . . . . . . . h ( x ) = 1 T 1 ( x ) = T 2 ( x ) = g ( t 1 , t 2 | θ ) = I ( t 1 > θ ∧ t 2 < θ + 1)

  71. min i x i max i x i is a sufficient statistic . Thus, T x max . x i I min i i x T i T x for . Hyun Min Kang Biostatistics 602 - Lecture 02 January 15th, 2013 x i i min . . . . . . . . . Recap Factorization Theorem . Summary One parameter, two-dimensional sufficient statistic . Factorization 23 / 27 . . . . . . . . . . . . . . . . . . . . . . h ( x ) = 1 T 1 ( x ) = T 2 ( x ) = g ( t 1 , t 2 | θ ) = I ( t 1 > θ ∧ t 2 < θ + 1) ( ) f X ( x | θ ) = x i > θ ∧ max < θ + 1 = g ( T 1 ( x ) , T 2 ( x ) | θ ) h ( x )

  72. . min January 15th, 2013 Biostatistics 602 - Lecture 02 Hyun Min Kang i i min I x i i max . x i i 23 / 27 . Recap . . . . . . . Factorization Theorem . Summary . One parameter, two-dimensional sufficient statistic . Factorization . . . . . . . . . . . . . . . . . . . . . . h ( x ) = 1 T 1 ( x ) = T 2 ( x ) = g ( t 1 , t 2 | θ ) = I ( t 1 > θ ∧ t 2 < θ + 1) ( ) f X ( x | θ ) = x i > θ ∧ max < θ + 1 = g ( T 1 ( x ) , T 2 ( x ) | θ ) h ( x ) Thus, T ( x ) = ( T 1 ( x ) , T 2 ( x )) = ( min i x i , max i x i ) is a sufficient statistic for θ .

  73. • Define order statistics x x n as an ordered permutation of • Is the order statistic a sufficient statistic for T n x x n . . January 15th, 2013 Biostatistics 602 - Lecture 02 Hyun Min Kang x x T T x ? x i.i.d. 24 / 27 . . . . . . . . . Recap Factorization Theorem . Summary Sufficient Order Statistics . Problem . . . . . . . . . . . . . . . . . . . . . . • X 1 , · · · , X n ∼ f X ( x | θ ) . • f X ( x | θ ) = ∏ n i =1 f X ( x i | θ )

  74. • Is the order statistic a sufficient statistic for T n x x n . . January 15th, 2013 Biostatistics 602 - Lecture 02 Hyun Min Kang x x T T x ? x . i.i.d. . Factorization Theorem . . . . . . . . Recap . Summary Sufficient Order Statistics . Problem 24 / 27 . . . . . . . . . . . . . . . . . . . . . • X 1 , · · · , X n ∼ f X ( x | θ ) . • f X ( x | θ ) = ∏ n i =1 f X ( x i | θ ) • Define order statistics x (1) ≤ · · · ≤ x ( n ) as an ordered permutation of

  75. . . January 15th, 2013 Biostatistics 602 - Lecture 02 Hyun Min Kang x i.i.d. . . . Problem 24 / 27 Sufficient Order Statistics Summary . . . . . . . . Recap Factorization Theorem . . . . . . . . . . . . . . . . . . . . . . • X 1 , · · · , X n ∼ f X ( x | θ ) . • f X ( x | θ ) = ∏ n i =1 f X ( x i | θ ) • Define order statistics x (1) ≤ · · · ≤ x ( n ) as an ordered permutation of • Is the order statistic a sufficient statistic for θ ? T ( x ) = ( T 1 ( x ) , · · · , T n ( x )) = ( x (1) , · · · , x ( n ) )

  76. f X t i f X x T n x T n x x n ) x n x h x (Note that T x Therefore, T x is a permutation of x x is a sufficient statistics for . Hyun Min Kang Biostatistics 602 - Lecture 02 January 15th, 2013 g T . . i . . . . . . . . Recap Factorization Theorem . Summary Factorization of Order Statistics g t t n n 25 / 27 . . . . . . . . . . . . . . . . . . . . . h ( x ) = 1

  77. f X x T n x T n x x n ) x n . x h x (Note that T x Therefore, T x is a permutation of x x is a sufficient statistics for . Hyun Min Kang Biostatistics 602 - Lecture 02 January 15th, 2013 g T 25 / 27 . . . . . . . . . . Recap Factorization Theorem Summary n Factorization of Order Statistics . . . . . . . . . . . . . . . . . . . . . h ( x ) = 1 ∏ g ( t 1 , · · · , t n | θ ) = f X ( t i | θ ) i =1

  78. . . January 15th, 2013 Biostatistics 602 - Lecture 02 Hyun Min Kang n . Factorization of Order Statistics Summary 25 / 27 Factorization Theorem Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . h ( x ) = 1 ∏ g ( t 1 , · · · , t n | θ ) = f X ( t i | θ ) i =1 f X ( x | θ ) = g ( T 1 ( x ) , · · · , T n ( x ) | θ ) h ( x ) (Note that ( T 1 ( x ) , · · · , T n ( x )) is a permutation of ( x 1 , · · · , x n ) ) Therefore, T ( x ) = ( x (1) , · · · , x ( n ) ) is a sufficient statistics for θ .

  79. f X x Then f X x . x . . exp x Define h x T x exp g t . t g T x h x holds, and T X X is a sufficient statistic by the Factorization Theorem. Hyun Min Kang Biostatistics 602 - Lecture 02 January 15th, 2013 . . . Summary . . . . . . . . Recap Factorization Theorem . Exercise 6.1 . . Problem . . . Solution . . 26 / 27 . . . . . . . . . . . . . . . . . . . . . X is one observation from a N (0 , σ 2 ) . Is | X | a sufficient statistic for σ 2 ?

  80. Then f X x t . Define T x x g t exp . . g T x h x holds, and T X X is a sufficient statistic by the Factorization Theorem. Hyun Min Kang Biostatistics 602 - Lecture 02 January 15th, 2013 . 26 / 27 Solution Recap . Problem . . Factorization Theorem . Exercise 6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X is one observation from a N (0 , σ 2 ) . Is | X | a sufficient statistic for σ 2 ? − x 2 1 ( ) f X ( x | σ 2 ) = √ 2 σ 2 2 πσ 2 exp h ( x ) = 1

  81. Then f X x . . . Define g t exp t g T x Solution h x holds, and T X X is a sufficient statistic by the Factorization Theorem. Hyun Min Kang Biostatistics 602 - Lecture 02 January 15th, 2013 . 26 / 27 . Factorization Theorem Summary Exercise 6.1 Recap . . . . . . . . . Problem . . . . . . . . . . . . . . . . . . . . . . . . X is one observation from a N (0 , σ 2 ) . Is | X | a sufficient statistic for σ 2 ? − x 2 1 ( ) f X ( x | σ 2 ) = √ 2 σ 2 2 πσ 2 exp h ( x ) = 1 T ( x ) = | x |

  82. Then f X x . . January 15th, 2013 Biostatistics 602 - Lecture 02 Hyun Min Kang statistic by the Factorization Theorem. X is a sufficient h x holds, and T X g T x Define . . . Solution 26 / 27 . . Problem . Exercise 6.1 . . . . . . . . Recap Summary Factorization Theorem . . . . . . . . . . . . . . . . . . . . . . X is one observation from a N (0 , σ 2 ) . Is | X | a sufficient statistic for σ 2 ? − x 2 1 ( ) f X ( x | σ 2 ) = √ 2 σ 2 2 πσ 2 exp h ( x ) = 1 T ( x ) = | x | − t 2 1 ( ) g ( t | θ ) √ = 2 σ 2 2 πσ 2 exp

  83. . . January 15th, 2013 Biostatistics 602 - Lecture 02 Hyun Min Kang statistic by the Factorization Theorem. Define . . . Solution . . 26 / 27 Problem . . . . . . . . Recap . Factorization Theorem . Summary Exercise 6.1 . . . . . . . . . . . . . . . . . . . . . X is one observation from a N (0 , σ 2 ) . Is | X | a sufficient statistic for σ 2 ? − x 2 1 ( ) f X ( x | σ 2 ) = √ 2 σ 2 2 πσ 2 exp h ( x ) = 1 T ( x ) = | x | − t 2 1 ( ) g ( t | θ ) √ = 2 σ 2 2 πσ 2 exp Then f X ( x | θ ) = g ( T ( x ) | θ ) h ( x ) holds, and T ( X ) = | X | is a sufficient

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend