biostatistics 602 statistical inference
play

Biostatistics 602 - Statistical Inference February 19th, 2013 - PowerPoint PPT Presentation

. .. .. . . .. . . . . . .. . . .. . . . .. .. Biostatistics 602 - Statistical Inference February 19th, 2013 Biostatistics 602 - Lecture 12 Hyun Min Kang February 19th, 2013 Hyun Min Kang Cramer-Rao Theorem Lecture 12 .


  1. . .. .. . . .. . . . . . .. . . .. . . . .. .. Biostatistics 602 - Statistical Inference February 19th, 2013 Biostatistics 602 - Lecture 12 Hyun Min Kang February 19th, 2013 Hyun Min Kang Cramer-Rao Theorem Lecture 12 . . . Summary . Attainability Regularity Condition Recap . . . . . . . . . .. . . .. .. . . .. . . . .. . .. . . .. . . . . .. .. . . .. . . .. . . . . . .. . . .. . 1 / 24 . . . . . . . . . . . . .

  2. . . Recap . . . . . . . . . . .. . . .. . Attainability .. . . .. . . .. . Regularity Condition . .. 3 What is the best unbiased estimator or uniformly unbiased minimium February 19th, 2013 Biostatistics 602 - Lecture 12 Hyun Min Kang UMVUE? 4 What is the Cramer-Rao bound, and how can it be useful to find . . variance estimator (UMVUE) ? . Summary . estimators? 2 What are plausible ways to compare between different point . . . . Last Lecture .. . . . .. . . .. . . .. . .. . . . .. . . .. . . . . .. .. .. . . .. . . .. . . . . .. . . .. . . 2 / 24 . . . . . . . . . . . . . 1 If you know MLE of θ , can you also know MLE of τ ( θ ) for any function τ ?

  3. . . Recap . . . . . . . . . . .. . . .. . Attainability .. . . .. . . .. . Regularity Condition . .. 3 What is the best unbiased estimator or uniformly unbiased minimium February 19th, 2013 Biostatistics 602 - Lecture 12 Hyun Min Kang UMVUE? 4 What is the Cramer-Rao bound, and how can it be useful to find . . variance estimator (UMVUE) ? . Summary . estimators? 2 What are plausible ways to compare between different point . . . . Last Lecture .. . . . .. . . .. . . .. . .. . . . .. . . .. . . . . .. .. .. . . .. . . .. . . . . .. . . .. . . 2 / 24 . . . . . . . . . . . . . 1 If you know MLE of θ , can you also know MLE of τ ( θ ) for any function τ ?

  4. . . Recap . . . . . . . . . . .. . . .. . Attainability .. . . .. . . .. . Regularity Condition . .. 3 What is the best unbiased estimator or uniformly unbiased minimium February 19th, 2013 Biostatistics 602 - Lecture 12 Hyun Min Kang UMVUE? 4 What is the Cramer-Rao bound, and how can it be useful to find . . variance estimator (UMVUE) ? . Summary . estimators? 2 What are plausible ways to compare between different point . . . . Last Lecture .. . . . .. . . .. . . .. . .. . . . .. . . .. . . . . .. .. .. . . .. . . .. . . . . .. . . .. . . 2 / 24 . . . . . . . . . . . . . 1 If you know MLE of θ , can you also know MLE of τ ( θ ) for any function τ ?

  5. . . Recap . . . . . . . . . . .. . . .. . Attainability .. . . .. . . .. . Regularity Condition . .. 3 What is the best unbiased estimator or uniformly unbiased minimium February 19th, 2013 Biostatistics 602 - Lecture 12 Hyun Min Kang UMVUE? 4 What is the Cramer-Rao bound, and how can it be useful to find . . variance estimator (UMVUE) ? . Summary . estimators? 2 What are plausible ways to compare between different point . . . . Last Lecture .. . . . .. . . .. . . .. . .. . . . .. . . .. . . . . .. .. .. . . .. . . .. . . . . .. . . .. . . 2 / 24 . . . . . . . . . . . . . 1 If you know MLE of θ , can you also know MLE of τ ( θ ) for any function τ ?

  6. . . Recap . . . . . . . . . . .. . . .. .. Attainability .. . . .. . . .. . Regularity Condition . .. . February 19th, 2013 Biostatistics 602 - Lecture 12 Hyun Min Kang E d d interchangeable, i.e. . Summary . . is an estimator satisfying . . Theorem 7.3.9 : Cramer-Rao Theorem . Recap : Cramer-Rao inequality . . . . .. . . .. . . . . .. . . . .. . . .. . . . .. 3 / 24 . . .. .. . . . . .. . .. .. .. . . .. . . . . . . . . . . . . . . . . Let X 1 , · · · , X n be a sample with joint pdf/pmf of f X ( x | θ ) . Suppose W ( X ) 1 E [ W ( X ) | θ ] = τ ( θ ) , ∀ θ ∈ Ω . 2 Var [ W ( X ) | θ ] < ∞ . For h ( x ) = 1 and h ( x ) = W ( x ) , if the differentiation and integrations are ∫ ∫ h ( x ) ∂ d θ E [ h ( x ) | θ ] = h ( x ) f X ( x | θ ) d x = ∂θ f X ( x | θ ) d x d θ x ∈X x ∈X Then, a lower bound of Var [ W ( X ) | θ ] is [ τ ′ ( θ )] 2 Var [ W ( X ) | θ ] ≥ [ { ∂ ] ∂θ log f X ( X | θ ) } 2 | θ

  7. . .. .. . . .. . . . . . .. . .. .. . . . .. . Corollary 7.3.10 February 19th, 2013 Biostatistics 602 - Lecture 12 Hyun Min Kang nE in the above Cramer-Rao theorem hold, then the lower-bound of . . . . Recap : Cramer-Rao bound in iid case Summary . Attainability Regularity Condition Recap . . . . . . . . . .. . . .. .. .. . .. . . . . . .. . . .. . . . . .. . . . .. . . . .. . 4 / 24 .. . . .. . . .. . . . . . . . . . . . . . . If X 1 , · · · , X n are iid samples from pdf/pmf f X ( x | θ ) , and the assumptions Var [ W ( X ) | θ ] becomes [ τ ′ ( θ )] 2 Var [ W ( X ) | θ ] ≥ { ∂ [ ∂θ log f X ( X | θ ) } 2 | θ ]

  8. . .. .. . . .. . . . . . .. . . .. . . . .. . Definition: Score or Score Function for X February 19th, 2013 Biostatistics 602 - Lecture 12 Hyun Min Kang i.i.d. . . . . Recap : Score Function Summary . Attainability Regularity Condition Recap . . . . . . . . . .. .. . .. .. . . .. . . . . . .. . . .. . . . .. .. .. . . .. . . .. . . . . . . .. . 5 / 24 . .. . . . . . . . . . . . . . X 1 , · · · , X n ∼ f X ( x | θ ) ∂ S ( X | θ ) ∂θ log f X ( X | θ ) = E [ S ( X | θ )] = 0 ∂ S n ( X | θ ) = ∂θ log f X ( X | θ )

  9. . .. . . .. . . .. . .. . . . .. . . .. . .. . . . . . . . . . .. . February 19th, 2013 Biostatistics 602 - Lecture 12 Hyun Min Kang The bigger the information number, the more information we have about nE E E . Recap Definition: Fisher Information Number . Recap : Fisher Information Number Summary . Attainability Regularity Condition . . . .. . .. . . .. . . . .. . .. . . .. . . . . . . .. . . .. . . . .. 6 / 24 . .. .. . . . . .. . . . . . . . . . . . . . [{ ∂ } 2 ] S 2 ( X | θ ) [ ] I ( θ ) = ∂θ log f X ( X | θ ) = E [{ ∂ } 2 ] I n ( θ ) = ∂θ log f X ( X | θ ) [{ ∂ } 2 ] ∂θ log f X ( X | θ ) = = nI ( θ ) θ , the smaller bound on the variance of unbiased estimates.

  10. . . . .. .. . .. . .. .. . . .. . . .. . . . .. . February 19th, 2013 Biostatistics 602 - Lecture 12 Hyun Min Kang which are true for exponential family, then d d . Lemma 7.3.11 . . . . . . . . . . Recap : Simplified Fisher Information Summary . Attainability Regularity Condition Recap . . . . .. . . .. . . .. . . . .. . . .. . . . 7 / 24 .. .. .. . . .. . .. . . . . . .. . . .. . . . . . . . . . . . . . . . If f X ( x | θ ) satisfies the two interchangeability conditions ∫ ∫ ∂ f X ( x | θ ) dx = ∂θ f X ( x | θ ) dx d θ x ∈X x ∈X ∂ 2 ∫ ∂ ∫ ∂θ f X ( x | θ ) dx = ∂θ 2 f X ( x | θ ) dx d θ x ∈X x ∈X [{ ∂ [ ∂ 2 } 2 ] ] I ( θ ) = E ∂θ log f X ( X | θ ) = − E ∂θ 2 log f X ( X | θ )

  11. log f X X Var X . Therefore X . . . Attainability Regularity Condition Recap . . . . . . . . . . .. . Recap - Normal Distribution .. . . .. . . .. . Summary I i.i.d. X February 19th, 2013 Biostatistics 602 - Lecture 12 Hyun Min Kang . attains the Cramer-Rao bound and thus the best unbiased estimator for n is nI The Cramer-Rao bound for E .. X log E X exp log E E .. . . . . . .. . . .. . . .. . . .. . . .. . . .. . . .. 8 / 24 . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . . . . . . . . . . . . ∼ N ( µ, σ 2 ) , where σ 2 is known. X 1 , · · · , X n

  12. Var X . Therefore X . .. Regularity Condition Recap . . . . . . . . . . .. . . . . . .. . . .. .. . .. Attainability Recap - Normal Distribution Summary X February 19th, 2013 Biostatistics 602 - Lecture 12 Hyun Min Kang . attains the Cramer-Rao bound and thus the best unbiased estimator for n is nI The Cramer-Rao bound for E . X log E X exp log E i.i.d. . . .. . . .. . . .. . . .. . .. .. . . .. . . .. . . . . . . . .. . . .. . . .. . . .. . .. . . . .. 8 / 24 . . . . . . . . . . . . . ∼ N ( µ, σ 2 ) , where σ 2 is known. X 1 , · · · , X n [ ∂ 2 ] I ( µ ) = − E ∂µ 2 log f X ( X | µ )

  13. Var X . Therefore X . .. . .. . . .. . . . Recap . .. . . .. . . . . . . . . . . . Attainability Regularity Condition The Cramer-Rao bound for February 19th, 2013 Biostatistics 602 - Lecture 12 Hyun Min Kang . attains the Cramer-Rao bound and thus the best unbiased estimator for n is nI X . E X log E i.i.d. Recap - Normal Distribution Summary . .. .. . . . . .. .. . . .. . .. . . . .. . . .. . . .. 8 / 24 . .. . .. . . .. . . . . .. . . . .. . .. . . . . . . . . . . . . . . ∼ N ( µ, σ 2 ) , where σ 2 is known. X 1 , · · · , X n [ ∂ 2 ] I ( µ ) = − E ∂µ 2 log f X ( X | µ ) [ ∂ 2 − ( X − µ ) 2 { 1 ( )}] − E √ = ∂µ 2 log 2 σ 2 2 πσ 2 exp

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend