hypothesis testing lecture 18 biostatistics 602
play

Hypothesis Testing Lecture 18 Biostatistics 602 - Statistical - PowerPoint PPT Presentation

. . March 21th, 2013 Biostatistics 602 - Lecture 18 Hyun Min Kang March 21th, 2013 Hyun Min Kang Hypothesis Testing Lecture 18 Biostatistics 602 - Statistical Inference . Summary . . Hypothesis Testing Recap . . . . . . . . . .


  1. • One-sided hypothesis: H • One-sided hypothesis: H • Two-sided hypothesis: H . Composite hypothesis . . vs H . vs H . . vs H . Hyun Min Kang Biostatistics 602 - Lecture 18 March 21th, 2013 . 9 / 35 . . . . Simple hypothesis . . Simple and composite hypothesis Summary . Hypothesis Testing Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Both H 0 and H 1 consist of only one parameter value. • H 0 : θ = θ 0 ∈ Ω 0 • H 1 : θ = θ 1 ∈ Ω c 0 One or both of H 0 and H 1 consist more than one parameter values.

  2. • One-sided hypothesis: H • Two-sided hypothesis: H . . March 21th, 2013 Biostatistics 602 - Lecture 18 Hyun Min Kang . vs H . vs H . . Composite hypothesis . 9 / 35 . . . . . Simple hypothesis . Simple and composite hypothesis Summary . . Hypothesis Testing Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Both H 0 and H 1 consist of only one parameter value. • H 0 : θ = θ 0 ∈ Ω 0 • H 1 : θ = θ 1 ∈ Ω c 0 One or both of H 0 and H 1 consist more than one parameter values. • One-sided hypothesis: H 0 : θ ≤ θ 0 vs H 1 : θ > θ 0 .

  3. • Two-sided hypothesis: H . . March 21th, 2013 Biostatistics 602 - Lecture 18 Hyun Min Kang . vs H . . Composite hypothesis . . . 9 / 35 Simple hypothesis Recap Simple and composite hypothesis . . . Summary . Hypothesis Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Both H 0 and H 1 consist of only one parameter value. • H 0 : θ = θ 0 ∈ Ω 0 • H 1 : θ = θ 1 ∈ Ω c 0 One or both of H 0 and H 1 consist more than one parameter values. • One-sided hypothesis: H 0 : θ ≤ θ 0 vs H 1 : θ > θ 0 . • One-sided hypothesis: H 0 : θ ≥ θ 0 vs H 1 : θ < θ 0 .

  4. . . March 21th, 2013 Biostatistics 602 - Lecture 18 Hyun Min Kang . . Composite hypothesis . . . Simple hypothesis . Simple and composite hypothesis Recap . . . . Summary . . . . . . . Hypothesis Testing 9 / 35 . . . . . . . . . . . . . . . . . . . . . . . . . . . Both H 0 and H 1 consist of only one parameter value. • H 0 : θ = θ 0 ∈ Ω 0 • H 1 : θ = θ 1 ∈ Ω c 0 One or both of H 0 and H 1 consist more than one parameter values. • One-sided hypothesis: H 0 : θ ≤ θ 0 vs H 1 : θ > θ 0 . • One-sided hypothesis: H 0 : θ ≥ θ 0 vs H 1 : θ < θ 0 . • Two-sided hypothesis: H 0 : θ = θ 0 vs H 1 : θ ̸ = θ 0 .

  5. . . March 21th, 2013 Biostatistics 602 - Lecture 18 Hyun Min Kang Two-sided composite hypothesis. (some effect) H (no effect) H i.i.d. 10 / 35 An Example of Hypothesis Summary . Hypothesis Testing Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X 1 , · · · , X n ∼ N ( θ, 1) Let X i is the change in blood pressure after a treatment.

  6. . An Example of Hypothesis March 21th, 2013 Biostatistics 602 - Lecture 18 Hyun Min Kang Two-sided composite hypothesis. (some effect) (no effect) . i.i.d. 10 / 35 Summary . . . . . . . . . . . Recap Hypothesis Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . X 1 , · · · , X n ∼ N ( θ, 1) Let X i is the change in blood pressure after a treatment. : θ = 0 H 0 : θ ̸ = 0 H 1

  7. • One may want the proportion to be less than a specified maximum • We want to test whether the products produced by the machine is . March 21th, 2013 Biostatistics 602 - Lecture 18 Hyun Min Kang (unacceptable) H (acceptable) H acceptable. . acceptable proportion 11 / 35 . Another Example of Hypothesis Summary . Hypothesis Testing Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • Let θ denotes the proportion of defective items from a machine.

  8. • We want to test whether the products produced by the machine is . . March 21th, 2013 Biostatistics 602 - Lecture 18 Hyun Min Kang (unacceptable) H (acceptable) H acceptable. 11 / 35 Another Example of Hypothesis Summary . Hypothesis Testing Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • Let θ denotes the proportion of defective items from a machine. • One may want the proportion to be less than a specified maximum acceptable proportion θ 0 .

  9. . Another Example of Hypothesis March 21th, 2013 Biostatistics 602 - Lecture 18 Hyun Min Kang (unacceptable) H (acceptable) H acceptable. . 11 / 35 Summary . Hypothesis Testing Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • Let θ denotes the proportion of defective items from a machine. • One may want the proportion to be less than a specified maximum acceptable proportion θ 0 . • We want to test whether the products produced by the machine is

  10. . Summary March 21th, 2013 Biostatistics 602 - Lecture 18 Hyun Min Kang (unacceptable) (acceptable) acceptable. . Another Example of Hypothesis 11 / 35 . . . Recap . . Hypothesis Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • Let θ denotes the proportion of defective items from a machine. • One may want the proportion to be less than a specified maximum acceptable proportion θ 0 . • We want to test whether the products produced by the machine is : θ ≤ θ 0 H 0 : θ > θ 0 H 1

  11. . W x (the subset of sample space for which H is rejected is called the rejection region or critical region). Rejection region ( R ) on a hypothesis is usually defined through a test statistic W X . For example, R x c x . R x W x c x Hyun Min Kang Biostatistics 602 - Lecture 18 March 21th, 2013 2 For which sample points H is rejected and H is accepted as true . . sample space for which H is accepted is called the acceptable region). . . . . . . . . . . Recap Hypothesis Testing . Summary Hypothesis Testing Procedure A hypothesis testing procedure is a rule that specifies: . . 1 For which sample points H is accepted as true (the subset of the 12 / 35 . . . . . . . . . . . . . . . . . . . . . . . . . . .

  12. . W x (the subset of sample space for which H is rejected is called the rejection region or critical region). Rejection region ( R ) on a hypothesis is usually defined through a test statistic W X . For example, R x c x . R x W x c x Hyun Min Kang Biostatistics 602 - Lecture 18 March 21th, 2013 2 For which sample points H is rejected and H is accepted as true . . Recap . . . . . . . . . . Hypothesis Testing . Summary Hypothesis Testing Procedure A hypothesis testing procedure is a rule that specifies: . . 12 / 35 . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 For which sample points H 0 is accepted as true (the subset of the sample space for which H 0 is accepted is called the acceptable region).

  13. . c x rejection region or critical region). Rejection region ( R ) on a hypothesis is usually defined through a test statistic W X . For example, R x W x R . x W x c x Hyun Min Kang Biostatistics 602 - Lecture 18 March 21th, 2013 . . 12 / 35 Hypothesis Testing . . . . . . . . . . Recap . Summary Hypothesis Testing Procedure A hypothesis testing procedure is a rule that specifies: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 For which sample points H 0 is accepted as true (the subset of the sample space for which H 0 is accepted is called the acceptable region). 2 For which sample points H 0 is rejected and H 1 is accepted as true (the subset of sample space for which H 0 is rejected is called the

  14. . A hypothesis testing procedure is a rule that specifies: March 21th, 2013 Biostatistics 602 - Lecture 18 Hyun Min Kang Rejection region ( R ) on a hypothesis is usually defined through a test rejection region or critical region). . . . . . 12 / 35 Hypothesis Testing Procedure . . Hypothesis Testing Recap . . . . . . . . . Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 For which sample points H 0 is accepted as true (the subset of the sample space for which H 0 is accepted is called the acceptable region). 2 For which sample points H 0 is rejected and H 1 is accepted as true (the subset of sample space for which H 0 is rejected is called the statistic W ( X ) . For example, = { x : W ( x ) > c , x ∈ X} R 1 { x : W ( x ) ≤ c , x ∈ X} = R 2

  15. • Test 1 : Reject H if x • Test 2 : Reject H if x . . March 21th, 2013 Biostatistics 602 - Lecture 18 Hyun Min Kang x i x rejection region = rejection region = x i x rejection region = rejection region = 13 / 35 . . . . . . . . . . i.i.d. Example of hypothesis testing Summary . Hypothesis Testing Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . ∼ Bernoulli ( p ) . Consider hypothesis tests X 1 , X 2 , X 3 p ≤ 0 . 5 : H 0 : p > 0 . 5 H 1

  16. • Test 2 : Reject H if x . i.i.d. March 21th, 2013 Biostatistics 602 - Lecture 18 Hyun Min Kang x i x rejection region = rejection region = . 13 / 35 Example of hypothesis testing Hypothesis Testing Summary . . . . . . . . . . . Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . ∼ Bernoulli ( p ) . Consider hypothesis tests X 1 , X 2 , X 3 p ≤ 0 . 5 : H 0 : p > 0 . 5 H 1 • Test 1 : Reject H 0 if x ∈ { (1 , 1 , 1) } ⇐ ⇒ rejection region = { (1 , 1 , 1) } ⇐ ⇒ rejection region = { x : ∑ x i > 2 }

  17. . . March 21th, 2013 Biostatistics 602 - Lecture 18 Hyun Min Kang . i.i.d. Example of hypothesis testing Summary 13 / 35 Hypothesis Testing Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ∼ Bernoulli ( p ) . Consider hypothesis tests X 1 , X 2 , X 3 p ≤ 0 . 5 : H 0 : p > 0 . 5 H 1 • Test 1 : Reject H 0 if x ∈ { (1 , 1 , 1) } ⇐ ⇒ rejection region = { (1 , 1 , 1) } ⇐ ⇒ rejection region = { x : ∑ x i > 2 } • Test 2 : Reject H 0 if x ∈ { (1 , 1 , 0) , (1 , 0 , 1) , (0 , 1 , 1) , (1 , 1 , 1) } ⇐ ⇒ rejection region = { (1 , 1 , 0) , (1 , 0 , 1) , (0 , 1 , 1) , (1 , 1 , 1) } ⇐ ⇒ rejection region = { x : ∑ x i > 1 }

  18. . H s X n . Decision Truth Accept H Reject H Correct Decision x Type I error H Type II error Correct Decision Hyun Min Kang Biostatistics 602 - Lecture 18 March 21th, 2013 x An example rejection region R . Hypothesis Testing . . . . . . . . . . Recap . Summary Example 14 / 35 . . . . . . . . . . . . . . . . . . . . . . . . . . . Let X 1 , · · · , X n be changes in blood pressure after a treatment. : θ = 0 H 0 : θ ̸ = 0 H 1

  19. . Correct Decision . Decision Truth Accept H Reject H H Type I error . H Type II error Correct Decision Hyun Min Kang Biostatistics 602 - Lecture 18 March 21th, 2013 x 14 / 35 Example . . . . . . . . . . Recap Summary . Hypothesis Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . Let X 1 , · · · , X n be changes in blood pressure after a treatment. : θ = 0 H 0 : θ ̸ = 0 H 1 { } An example rejection region R = x : s X / √ n > 3

  20. . . March 21th, 2013 Biostatistics 602 - Lecture 18 Hyun Min Kang Correct Decision Type II error Type I error Correct Decision Truth Decision . x 14 / 35 . Hypothesis Testing . . . . . . . . . . Example Recap Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . Let X 1 , · · · , X n be changes in blood pressure after a treatment. : θ = 0 H 0 : θ ̸ = 0 H 1 { } An example rejection region R = x : s X / √ n > 3 Accept H 0 Reject H 0 H 0 H 1

  21. c (if the alternative hypothesis is true), the probability of making a If . . . . . . . . Type II error type II error is Pr X R Pr X R Hyun Min Kang Biostatistics 602 - Lecture 18 March 21th, 2013 . . . Hypothesis Testing . . . . . . . . . . Recap . Summary Type I and Type II error . Type I error . . error is 15 / 35 . . . . . . . . . . . . . . . . . . . . . . . . . . . If θ ∈ Ω 0 (if the null hypothesis is true), the probability of making a type I Pr ( X ∈ R | θ )

  22. . Type I error March 21th, 2013 Biostatistics 602 - Lecture 18 Hyun Min Kang type II error is . . Type II error . error is . . . . Recap . . . . Type I and Type II error . . . . . . Hypothesis Testing . Summary 15 / 35 . . . . . . . . . . . . . . . . . . . . . . . . . . . If θ ∈ Ω 0 (if the null hypothesis is true), the probability of making a type I Pr ( X ∈ R | θ ) If θ ∈ Ω c 0 (if the alternative hypothesis is true), the probability of making a ∈ R | θ ) = 1 − Pr ( X ∈ R | θ ) Pr ( X /

  23. c (alternative is true), the probability of rejecting H is called the • Probability of type I error = • Probability of type II error = c . power of test for this particular value of . if . if . If for all , for all c , which is typically not possible in practice. Hyun Min Kang Biostatistics 602 - Lecture 18 March 21th, 2013 An ideal test should have power function satisfying 16 / 35 . Hypothesis Testing . . . . . . . . . . Recap . Summary Power function . Definition - The power function . . The power function of a hypothesis test with rejection region R is the . . . . . . . . . . . . . . . . . . . . . . . . . . . function of θ defined by β ( θ ) = Pr ( X ∈ R | θ ) = Pr ( reject H 0 | θ )

  24. • Probability of type I error = • Probability of type II error = . . March 21th, 2013 Biostatistics 602 - Lecture 18 Hyun Min Kang c , which is typically not possible in practice. for all , for all An ideal test should have power function satisfying c . if . if 16 / 35 The power function of a hypothesis test with rejection region R is the . . . . . . . . . . . Recap Hypothesis Testing Summary Power function . Definition - The power function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . function of θ defined by β ( θ ) = Pr ( X ∈ R | θ ) = Pr ( reject H 0 | θ ) If θ ∈ Ω c 0 (alternative is true), the probability of rejecting H 0 is called the power of test for this particular value of θ .

  25. • Probability of type II error = . . March 21th, 2013 Biostatistics 602 - Lecture 18 Hyun Min Kang c , which is typically not possible in practice. for all , for all An ideal test should have power function satisfying c . if . The power function of a hypothesis test with rejection region R is the 16 / 35 . Definition - The power function . . . . . . . . . . Recap Hypothesis Testing . Summary Power function . . . . . . . . . . . . . . . . . . . . . . . . . . . . function of θ defined by β ( θ ) = Pr ( X ∈ R | θ ) = Pr ( reject H 0 | θ ) If θ ∈ Ω c 0 (alternative is true), the probability of rejecting H 0 is called the power of test for this particular value of θ . • Probability of type I error = β ( θ ) if θ ∈ Ω 0 .

  26. . Definition - The power function March 21th, 2013 Biostatistics 602 - Lecture 18 Hyun Min Kang c , which is typically not possible in practice. for all , for all An ideal test should have power function satisfying . . . The power function of a hypothesis test with rejection region R is the . Power function . . . . . . . . . . Recap Hypothesis Testing 16 / 35 . Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . function of θ defined by β ( θ ) = Pr ( X ∈ R | θ ) = Pr ( reject H 0 | θ ) If θ ∈ Ω c 0 (alternative is true), the probability of rejecting H 0 is called the power of test for this particular value of θ . • Probability of type I error = β ( θ ) if θ ∈ Ω 0 . • Probability of type II error = 1 − β ( θ ) if θ ∈ Ω c 0 .

  27. . Power function March 21th, 2013 Biostatistics 602 - Lecture 18 Hyun Min Kang The power function of a hypothesis test with rejection region R is the . . Definition - The power function . . Summary . . . . 16 / 35 . . . . . . . Recap Hypothesis Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . function of θ defined by β ( θ ) = Pr ( X ∈ R | θ ) = Pr ( reject H 0 | θ ) If θ ∈ Ω c 0 (alternative is true), the probability of rejecting H 0 is called the power of test for this particular value of θ . • Probability of type I error = β ( θ ) if θ ∈ Ω 0 . • Probability of type II error = 1 − β ( θ ) if θ ∈ Ω c 0 . An ideal test should have power function satisfying β ( θ ) = 0 for all θ ∈ Ω 0 , β ( θ ) = 1 for all θ ∈ Ω c 0 , which is typically not possible in practice.

  28. . . x x x i x i . . 1 Compute the power function . Test 1 rejects H if and only if all ”success” are observed. i.e. 2 What is the maximum probability of making type I error? . . 3 What is the probability of making type II error if ? Hyun Min Kang Biostatistics 602 - Lecture 18 March 21th, 2013 R H . . . . . . . . . . . . Recap Hypothesis Testing Summary H Example of power function . Problem . . i.i.d. 17 / 35 . . . . . . . . . . . . . . . . . . . . . . . . . . . X 1 , X 2 , · · · , X n ∼ Bernoulli ( θ ) where n = 5 .

  29. . 1 Compute the power function R x x x i x i . . . . . 2 What is the maximum probability of making type I error? . . 3 What is the probability of making type II error if ? Hyun Min Kang Biostatistics 602 - Lecture 18 March 21th, 2013 Test 1 rejects H if and only if all ”success” are observed. i.e. 17 / 35 Example of power function Problem Recap Hypothesis Testing . Summary . . . . . i.i.d. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X 1 , X 2 , · · · , X n ∼ Bernoulli ( θ ) where n = 5 . : θ ≤ 0 . 5 H 0 : θ > 0 . 5 H 1

  30. . 2 What is the maximum probability of making type I error? R . . 1 Compute the power function . . . i.i.d. . 3 What is the probability of making type II error if ? Hyun Min Kang Biostatistics 602 - Lecture 18 March 21th, 2013 . 17 / 35 Example of power function Summary . Problem . Hypothesis Testing Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X 1 , X 2 , · · · , X n ∼ Bernoulli ( θ ) where n = 5 . : θ ≤ 0 . 5 H 0 : θ > 0 . 5 H 1 Test 1 rejects H 0 if and only if all ”success” are observed. i.e. = { x : x = (1 , 1 , 1 , 1 , 1) } 5 ∑ { x : x i = 5 } = i =1

  31. . 2 What is the maximum probability of making type I error? R . . 1 Compute the power function . . . i.i.d. . 3 What is the probability of making type II error if ? Hyun Min Kang Biostatistics 602 - Lecture 18 March 21th, 2013 . 17 / 35 Example of power function Summary . Problem . Hypothesis Testing Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X 1 , X 2 , · · · , X n ∼ Bernoulli ( θ ) where n = 5 . : θ ≤ 0 . 5 H 0 : θ > 0 . 5 H 1 Test 1 rejects H 0 if and only if all ”success” are observed. i.e. = { x : x = (1 , 1 , 1 , 1 , 1) } 5 ∑ { x : x i = 5 } = i =1

  32. . 2 What is the maximum probability of making type I error? R . . 1 Compute the power function . . . i.i.d. . 3 What is the probability of making type II error if ? Hyun Min Kang Biostatistics 602 - Lecture 18 March 21th, 2013 . 17 / 35 Example of power function Summary . Problem . Hypothesis Testing Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X 1 , X 2 , · · · , X n ∼ Bernoulli ( θ ) where n = 5 . : θ ≤ 0 . 5 H 0 : θ > 0 . 5 H 1 Test 1 rejects H 0 if and only if all ”success” are observed. i.e. = { x : x = (1 , 1 , 1 , 1 , 1) } 5 ∑ { x : x i = 5 } = i =1

  33. . i.i.d. March 21th, 2013 Biostatistics 602 - Lecture 18 Hyun Min Kang . . 2 What is the maximum probability of making type I error? . . 1 Compute the power function . . R . 17 / 35 . Example of power function . Hypothesis Testing Recap . . . . . . . . . . Problem . . Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . X 1 , X 2 , · · · , X n ∼ Bernoulli ( θ ) where n = 5 . : θ ≤ 0 . 5 H 0 : θ > 0 . 5 H 1 Test 1 rejects H 0 if and only if all ”success” are observed. i.e. = { x : x = (1 , 1 , 1 , 1 , 1) } 5 ∑ { x : x i = 5 } = i =1 3 What is the probability of making type II error if θ = 2/3 ?

  34. . . . . . . . . When , the power function is Type I error. max max Type II error when . . . . . . . . . Hyun Min Kang Biostatistics 602 - Lecture 18 March 21th, 2013 . Maximum type I error . . . . . . . . . . . . Recap Hypothesis Testing . Summary Solution for Test 1 . Power function . . Pr X i Because X i Binomial , . 18 / 35 . . . . . . . . . . . . . . . . . . . . . . . . . . . β ( θ ) = Pr ( reject H 0 | θ ) = Pr ( X ∈ R | θ )

  35. . max . . . . . . . When , the power function is Type I error. max . Maximum type I error Type II error when . . . . . . . . Hyun Min Kang Biostatistics 602 - Lecture 18 March 21th, 2013 . . . Power function . . . . . . . . . . Recap Hypothesis Testing . Summary Solution for Test 1 . . . . Because X i Binomial , 18 / 35 . . . . . . . . . . . . . . . . . . . . . . . . . . . β ( θ ) = Pr ( reject H 0 | θ ) = Pr ( X ∈ R | θ ) ∑ = Pr ( X i = 5 | θ )

  36. . . . . . . . When , the power function is Type I error. max max Type II error when . . . . . . . . . Hyun Min Kang Biostatistics 602 - Lecture 18 March 21th, 2013 . . . . . . . . . . . . . . Recap Hypothesis Testing . Summary Solution for Test 1 Power function Maximum type I error . . . 18 / 35 . . . . . . . . . . . . . . . . . . . . . . . . . . . β ( θ ) = Pr ( reject H 0 | θ ) = Pr ( X ∈ R | θ ) ∑ = Pr ( X i = 5 | θ ) Because ∑ X i ∼ Binomial (5 , θ ) , β ( θ ) = θ 5 .

  37. . . Maximum type I error . . max max . Type II error when . . . . . . . . Hyun Min Kang Biostatistics 602 - Lecture 18 March 21th, 2013 . 18 / 35 Solution for Test 1 . . . . . . Hypothesis Testing . Summary . . Power function . . . . . Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . β ( θ ) = Pr ( reject H 0 | θ ) = Pr ( X ∈ R | θ ) ∑ = Pr ( X i = 5 | θ ) Because ∑ X i ∼ Binomial (5 , θ ) , β ( θ ) = θ 5 . When θ ∈ Ω 0 = (0 , 0 . 5] , the power function β ( θ ) is Type I error.

  38. . . Maximum type I error . . max max . Type II error when . . . . . . . . Hyun Min Kang Biostatistics 602 - Lecture 18 March 21th, 2013 . 18 / 35 . . . Summary Solution for Test 1 Recap Power function . . . . . . . . . . . Hypothesis Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . β ( θ ) = Pr ( reject H 0 | θ ) = Pr ( X ∈ R | θ ) ∑ = Pr ( X i = 5 | θ ) Because ∑ X i ∼ Binomial (5 , θ ) , β ( θ ) = θ 5 . When θ ∈ Ω 0 = (0 , 0 . 5] , the power function β ( θ ) is Type I error. θ ∈ (0 , 0 . 5] θ 5 = 0 . 5 5 = 1/32 ≈ 0 . 031 θ ∈ (0 , 0 . 5] β ( θ ) =

  39. . . March 21th, 2013 Biostatistics 602 - Lecture 18 Hyun Min Kang . . . max max . . Maximum type I error . . 18 / 35 . . . . . . . Recap . Hypothesis Testing . . Summary Solution for Test 1 . . Power function . . . . . . . . . . . . . . . . . . . . . . . . . . . . β ( θ ) = Pr ( reject H 0 | θ ) = Pr ( X ∈ R | θ ) ∑ = Pr ( X i = 5 | θ ) Because ∑ X i ∼ Binomial (5 , θ ) , β ( θ ) = θ 5 . When θ ∈ Ω 0 = (0 , 0 . 5] , the power function β ( θ ) is Type I error. θ ∈ (0 , 0 . 5] θ 5 = 0 . 5 5 = 1/32 ≈ 0 . 031 θ ∈ (0 , 0 . 5] β ( θ ) = Type II error when θ = 2/3 3 = 1 − (2/3) 5 = 211/243 ≈ 0 . 868 3 = 1 − θ 5 � 1 − β ( θ ) | θ = 2 � θ = 2

  40. . . R x i x i . . 1 Compute the power function . H 2 What is the maximum probability of making type I error? . . 3 What is the probability of making type II error if ? Hyun Min Kang Biostatistics 602 - Lecture 18 March 21th, 2013 Test 2 rejects H if and only if 3 or more ”success” are observed. i.e. H . Hypothesis Testing . . . . . . . . . . Recap . Summary Another Example . Problem . . i.i.d. 19 / 35 . . . . . . . . . . . . . . . . . . . . . . . . . . . X 1 , X 2 , · · · , X n ∼ Bernoulli ( θ ) where n = 5 .

  41. . . R x i x i . . 1 Compute the power function . . 2 What is the maximum probability of making type I error? . . 3 What is the probability of making type II error if ? Hyun Min Kang Biostatistics 602 - Lecture 18 March 21th, 2013 Test 2 rejects H if and only if 3 or more ”success” are observed. i.e. 19 / 35 Another Example . . . . . . Hypothesis Testing . Summary . . Problem . . i.i.d. . . . Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . X 1 , X 2 , · · · , X n ∼ Bernoulli ( θ ) where n = 5 . : θ ≤ 0 . 5 H 0 : θ > 0 . 5 H 1

  42. . 2 What is the maximum probability of making type I error? R . . 1 Compute the power function . . . i.i.d. . 3 What is the probability of making type II error if ? Hyun Min Kang Biostatistics 602 - Lecture 18 March 21th, 2013 . 19 / 35 Summary . Another Example . Problem Hypothesis Testing Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X 1 , X 2 , · · · , X n ∼ Bernoulli ( θ ) where n = 5 . : θ ≤ 0 . 5 H 0 : θ > 0 . 5 H 1 Test 2 rejects H 0 if and only if 3 or more ”success” are observed. i.e. 5 ∑ = { x : x i ≥ 3 } i =1

  43. . i.i.d. March 21th, 2013 Biostatistics 602 - Lecture 18 Hyun Min Kang . . 2 What is the maximum probability of making type I error? . . 1 Compute the power function . . R . 19 / 35 . . . Summary Another Example Recap . . . . . . . . . . Problem . Hypothesis Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . X 1 , X 2 , · · · , X n ∼ Bernoulli ( θ ) where n = 5 . : θ ≤ 0 . 5 H 0 : θ > 0 . 5 H 1 Test 2 rejects H 0 if and only if 3 or more ”success” are observed. i.e. 5 ∑ = { x : x i ≥ 3 } i =1 3 What is the probability of making type II error if θ = 2/3 ?

  44. . . Maximum type I error is Maximum type I error . . . . . . . . We need to find the maximum of for is increasing in . . Type II error when . . . . . . . . Hyun Min Kang Biostatistics 602 - Lecture 18 March 21th, 2013 . 20 / 35 . . . Solution for Test 2 Summary . Hypothesis Testing Recap . . . . . . . . . . Power function . . . . . . . . . . . . . . . . . . . . . . . . . . . ( 5 ) ( 5 ) ( 5 ) θ 3 (1 − θ ) 2 + ∑ θ 4 (1 − θ ) + θ 5 β ( θ ) = Pr ( X i ≥ 3 | θ ) = 3 4 5

  45. . . Maximum type I error is Maximum type I error . . . . . . . . We need to find the maximum of for is increasing in . . Type II error when . . . . . . . . Hyun Min Kang Biostatistics 602 - Lecture 18 March 21th, 2013 . 20 / 35 . Solution for Test 2 . . . . . . . . . . . . Recap Power function Hypothesis Testing . Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . ( 5 ) ( 5 ) ( 5 ) θ 3 (1 − θ ) 2 + ∑ θ 4 (1 − θ ) + θ 5 β ( θ ) = Pr ( X i ≥ 3 | θ ) = 3 4 5 θ 3 (6 θ 2 − 15 θ + 10) =

  46. . . Maximum type I error . . is increasing in . Maximum type I error is . Type II error when . . . . . . . . Hyun Min Kang Biostatistics 602 - Lecture 18 March 21th, 2013 . 20 / 35 Power function . . . Solution for Test 2 Summary . Hypothesis Testing Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( 5 ) ( 5 ) ( 5 ) θ 3 (1 − θ ) 2 + ∑ θ 4 (1 − θ ) + θ 5 β ( θ ) = Pr ( X i ≥ 3 | θ ) = 3 4 5 θ 3 (6 θ 2 − 15 θ + 10) = We need to find the maximum of β ( θ ) for θ ∈ Ω 0 = (0 , 0 . 5] β ′ ( θ ) = 30 θ 2 ( θ − 1) 2 > 0

  47. . . March 21th, 2013 Biostatistics 602 - Lecture 18 Hyun Min Kang . . . . . Maximum type I error . . . 20 / 35 Power function Solution for Test 2 . . . . . . . . . . Recap Hypothesis Testing . . Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . ( 5 ) ( 5 ) ( 5 ) θ 3 (1 − θ ) 2 + ∑ θ 4 (1 − θ ) + θ 5 β ( θ ) = Pr ( X i ≥ 3 | θ ) = 3 4 5 θ 3 (6 θ 2 − 15 θ + 10) = We need to find the maximum of β ( θ ) for θ ∈ Ω 0 = (0 , 0 . 5] β ′ ( θ ) = 30 θ 2 ( θ − 1) 2 > 0 β ( θ ) is increasing in θ ∈ (0 , 1) . Maximum type I error is β (0 . 5) = 0 . 5 Type II error when θ = 2/3 3 = 1 − θ 3 (6 θ 2 − 15 θ + 10) � 1 − β ( θ ) | θ = 2 3 ≈ 0 . 21 θ = 2 �

  48. . test if . . . . . . . A test with power function is a level sup test In other words, the maximum probability of making a type I error is equal or less than . Any size test is also a level test Hyun Min Kang Biostatistics 602 - Lecture 18 March 21th, 2013 . Level . . . . . . . . . . . . Recap Hypothesis Testing . Summary Sizes and Levels of Tests . . . sup In other words, the maximum probability of making a type I error is . 21 / 35 . . . . . . . . . . . . . . . . . . . . . . . . . . . Size α test A test with power function β ( θ ) is a size α test if β ( θ ) = α θ ∈ Ω 0

  49. . test if . . . . . . . A test with power function is a level sup test In other words, the maximum probability of making a type I error is equal or less than . Any size test is also a level test Hyun Min Kang Biostatistics 602 - Lecture 18 March 21th, 2013 . Level . Summary . . . . . . . . . . Recap Hypothesis Testing . Sizes and Levels of Tests . . . . sup 21 / 35 . . . . . . . . . . . . . . . . . . . . . . . . . . . Size α test A test with power function β ( θ ) is a size α test if β ( θ ) = α θ ∈ Ω 0 In other words, the maximum probability of making a type I error is α .

  50. . sup March 21th, 2013 Biostatistics 602 - Lecture 18 Hyun Min Kang test test is also a level Any size . or less than In other words, the maximum probability of making a type I error is equal sup . . . . 21 / 35 Recap . . . . . Sizes and Levels of Tests . Summary . . . . . . . . Hypothesis Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . Size α test A test with power function β ( θ ) is a size α test if β ( θ ) = α θ ∈ Ω 0 In other words, the maximum probability of making a type I error is α . Level α test A test with power function β ( θ ) is a level α test if β ( θ ) ≤ α θ ∈ Ω 0

  51. . . March 21th, 2013 Biostatistics 602 - Lecture 18 Hyun Min Kang test test is also a level Any size In other words, the maximum probability of making a type I error is equal sup . . . . sup 21 / 35 . . . . . . . . . . . . Recap Hypothesis Testing Sizes and Levels of Tests Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . Size α test A test with power function β ( θ ) is a size α test if β ( θ ) = α θ ∈ Ω 0 In other words, the maximum probability of making a type I error is α . Level α test A test with power function β ( θ ) is a level α test if β ( θ ) ≤ α θ ∈ Ω 0 or less than α .

  52. . . March 21th, 2013 Biostatistics 602 - Lecture 18 Hyun Min Kang In other words, the maximum probability of making a type I error is equal sup . . . . . sup . Hypothesis Testing . . . . . . . . . . Recap . Summary Sizes and Levels of Tests 21 / 35 . . . . . . . . . . . . . . . . . . . . . . . . . . . Size α test A test with power function β ( θ ) is a size α test if β ( θ ) = α θ ∈ Ω 0 In other words, the maximum probability of making a type I error is α . Level α test A test with power function β ( θ ) is a level α test if β ( θ ) ≤ α θ ∈ Ω 0 or less than α . Any size α test is also a level α test

  53. . . Test 2 . . . . . . . . sup The size is 0.5 Hyun Min Kang Biostatistics 602 - Lecture 18 March 21th, 2013 . 22 / 35 Summary . . . . . . . Recap Hypothesis Testing . Revisiting Previous Examples . Test 1 . . . . sup . . . . . . . . . . . . . . . . . . . . . . . . . . . . θ 5 = 0 . 5 5 = 0 . 03125 β ( θ ) = sup θ ∈ Ω 0 θ ∈ Ω 0 The size is 0 . 03125 , and this is a level 0 . 05 test, or a level 0 . 1 test, but not a level 0 . 01 test.

  54. . . March 21th, 2013 Biostatistics 602 - Lecture 18 Hyun Min Kang The size is 0.5 sup . . Test 2 . . sup . 22 / 35 Test 1 . . . . . . . . . . . Recap Hypothesis Testing . Summary Revisiting Previous Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . θ 5 = 0 . 5 5 = 0 . 03125 β ( θ ) = sup θ ∈ Ω 0 θ ∈ Ω 0 The size is 0 . 03125 , and this is a level 0 . 05 test, or a level 0 . 1 test, but not a level 0 . 01 test. β ( θ ) = 0 . 5 θ ∈ Ω 0

  55. . . March 21th, 2013 Biostatistics 602 - Lecture 18 Hyun Min Kang c . the largest power if probability as small as possible; equivalently, we want the test with 2 Within this level of tests, we search for the test with Type II error . . Constructing a good test . Summary . Hypothesis Testing Recap . . . . . . . . . . 23 / 35 . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Construct all the level α test.

  56. . Constructing a good test March 21th, 2013 Biostatistics 602 - Lecture 18 Hyun Min Kang probability as small as possible; equivalently, we want the test with 2 Within this level of tests, we search for the test with Type II error . . . . . Summary . Hypothesis Testing Recap . . . . . . . . . . 23 / 35 . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Construct all the level α test. the largest power if θ ∈ Ω c 0 .

  57. . of the standard distribution satisfy . . . . . Let T t n with pdf f T n t and cdf F T n t . The -th quantile t n or -th quantile t n Pr T . t n or t n F T n Pr T t n or t n F T n t n t n Hyun Min Kang Biostatistics 602 - Lecture 18 March 21th, 2013 . . . . . . . . . . . . . . Recap Hypothesis Testing . Summary Review on standard normal and t distribution . Quantile of standard normal distribution . 24 / 35 Quantile of t distribution or . z z F Z z z Pr Z F Z z or z Pr Z . . . . . . . . . . . . . . . . . . . . . . . . . . . Let Z ∼ N (0 , 1) with pdf f Z ( z ) and cdf F Z ( z ) . The α -th quantile z α or (1 − α ) -th quantile z 1 − α of the standard distribution satisfy

  58. . of the standard distribution satisfy . . . . Let T t n with pdf f T n t and cdf F T n t . The -th quantile t n or -th quantile t n Pr T . t n or t n F T n Pr T t n or t n F T n t n t n Hyun Min Kang Biostatistics 602 - Lecture 18 March 21th, 2013 . . . . . . . . . . . . . . Recap Hypothesis Testing . Summary Review on standard normal and t distribution . Quantile of standard normal distribution . 24 / 35 . z Quantile of t distribution . z z F Z or z Pr Z or . . . . . . . . . . . . . . . . . . . . . . . . . . . Let Z ∼ N (0 , 1) with pdf f Z ( z ) and cdf F Z ( z ) . The α -th quantile z α or (1 − α ) -th quantile z 1 − α of the standard distribution satisfy z α = F − 1 Pr ( Z ≥ z α ) = α Z (1 − α )

  59. . of the standard distribution satisfy . . . . Let T t n with pdf f T n t and cdf F T n t . The -th quantile t n or -th quantile t n Pr T . t n or t n F T n Pr T t n or t n F T n t n t n Hyun Min Kang Biostatistics 602 - Lecture 18 March 21th, 2013 . . . . . . . . . . . . . . Recap Hypothesis Testing . Summary Review on standard normal and t distribution . Quantile of standard normal distribution . . or or z z . Quantile of t distribution 24 / 35 . . . . . . . . . . . . . . . . . . . . . . . . . . . Let Z ∼ N (0 , 1) with pdf f Z ( z ) and cdf F Z ( z ) . The α -th quantile z α or (1 − α ) -th quantile z 1 − α of the standard distribution satisfy z α = F − 1 Pr ( Z ≥ z α ) = α Z (1 − α ) z 1 − α = F − 1 Pr ( Z ≤ z 1 − α ) = α Z ( α )

  60. . F T n . Quantile of t distribution . . Pr T t n or t n Pr T or t n or t n F T n t n t n Hyun Min Kang Biostatistics 602 - Lecture 18 March 21th, 2013 . 24 / 35 . Recap Hypothesis Testing . Summary Review on standard normal and t distribution . Quantile of standard normal distribution . . . . . . . . or . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Let Z ∼ N (0 , 1) with pdf f Z ( z ) and cdf F Z ( z ) . The α -th quantile z α or (1 − α ) -th quantile z 1 − α of the standard distribution satisfy z α = F − 1 Pr ( Z ≥ z α ) = α Z (1 − α ) z 1 − α = F − 1 Pr ( Z ≤ z 1 − α ) = α Z ( α ) − z α = z 1 − α Let T ∼ t n − 1 with pdf f T , n − 1 ( t ) and cdf F T , n − 1 ( t ) . The α -th quantile t n − 1 ,α or (1 − α ) -th quantile t n − 1 , 1 − α of the standard distribution satisfy

  61. . . March 21th, 2013 Biostatistics 602 - Lecture 18 Hyun Min Kang or or . . Quantile of t distribution . . or or 24 / 35 . . . . . . . . . . . . Quantile of standard normal distribution Hypothesis Testing Recap Summary Review on standard normal and t distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . Let Z ∼ N (0 , 1) with pdf f Z ( z ) and cdf F Z ( z ) . The α -th quantile z α or (1 − α ) -th quantile z 1 − α of the standard distribution satisfy z α = F − 1 Pr ( Z ≥ z α ) = α Z (1 − α ) z 1 − α = F − 1 Pr ( Z ≤ z 1 − α ) = α Z ( α ) − z α = z 1 − α Let T ∼ t n − 1 with pdf f T , n − 1 ( t ) and cdf F T , n − 1 ( t ) . The α -th quantile t n − 1 ,α or (1 − α ) -th quantile t n − 1 , 1 − α of the standard distribution satisfy t n − 1 α = F − 1 Pr ( T ≥ t n − 1 ,α ) = α T , n − 1 (1 − α ) t n − 1 , 1 − α = F − 1 Pr ( T ≤ t n − 1 , 1 − α ) = α T , n − 1 ( α ) = − t n − 1 ,α t n − 1 , 1 − α

  62. . over L x L x where is the MLE of over , and is the MLE of (restricted MLE). L The likelihood ratio test is a test that rejects H if and only if x c where c . Hyun Min Kang Biostatistics 602 - Lecture 18 March 21th, 2013 x sup . x . . . . . . . . . . Recap Hypothesis Testing . Summary Likelihood Ratio Tests (LRT) . Definition . . x sup L 25 / 35 . . . . . . . . . . . . . . . . . . . . . . . . . . . Let L ( θ | x ) be the likelihood function of θ . The likelihood ratio test statistic for testing H 0 : θ ∈ Ω 0 vs. H 1 : θ ∈ Ω c 0 is

  63. . The likelihood ratio test is a test that rejects H if and only if is the MLE of over , and is the MLE of over (restricted MLE). x . c where c . Hyun Min Kang Biostatistics 602 - Lecture 18 March 21th, 2013 where 25 / 35 . . . Summary Likelihood Ratio Tests (LRT) Recap Definition . Hypothesis Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Let L ( θ | x ) be the likelihood function of θ . The likelihood ratio test statistic for testing H 0 : θ ∈ Ω 0 vs. H 1 : θ ∈ Ω c 0 is sup θ ∈ Ω L ( θ | x ) = L (ˆ sup θ ∈ Ω 0 L ( θ | x ) θ 0 | x ) λ ( x ) = L (ˆ θ | x )

  64. . . March 21th, 2013 Biostatistics 602 - Lecture 18 Hyun Min Kang . c where c x The likelihood ratio test is a test that rejects H if and only if (restricted MLE). . . 25 / 35 Definition . Hypothesis Testing . Summary Likelihood Ratio Tests (LRT) . . . . . . . . Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Let L ( θ | x ) be the likelihood function of θ . The likelihood ratio test statistic for testing H 0 : θ ∈ Ω 0 vs. H 1 : θ ∈ Ω c 0 is sup θ ∈ Ω L ( θ | x ) = L (ˆ sup θ ∈ Ω 0 L ( θ | x ) θ 0 | x ) λ ( x ) = L (ˆ θ | x ) where ˆ θ is the MLE of θ over θ ∈ Ω , and ˆ θ 0 is the MLE of θ over θ ∈ Ω 0

  65. . Likelihood Ratio Tests (LRT) March 21th, 2013 Biostatistics 602 - Lecture 18 Hyun Min Kang (restricted MLE). . . . Definition . 25 / 35 Summary . Hypothesis Testing Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Let L ( θ | x ) be the likelihood function of θ . The likelihood ratio test statistic for testing H 0 : θ ∈ Ω 0 vs. H 1 : θ ∈ Ω c 0 is sup θ ∈ Ω L ( θ | x ) = L (ˆ sup θ ∈ Ω 0 L ( θ | x ) θ 0 | x ) λ ( x ) = L (ˆ θ | x ) where ˆ θ is the MLE of θ over θ ∈ Ω , and ˆ θ 0 is the MLE of θ over θ ∈ Ω 0 The likelihood ratio test is a test that rejects H 0 if and only if λ ( x ) ≤ c where 0 ≤ c ≤ 1 .

  66. • Difference choice of c • The smaller the c , the smaller type I error. • The larger the c , the smaller the type II error. • Choose c such that type I error probability of LRT is bound above by give different tests. March 21th, 2013 Biostatistics 602 - Lecture 18 Hyun Min Kang test. Then we get a size sup Pr reject H sup c x sup Pr . . . Properties of LRT Summary . Hypothesis Testing Recap . . . . . . . . . . 26 / 35 . . . . . . . . . . . . . . . . . . . . . . . . . . . • For example • If c = 1 , null hypothesis will always be rejected. • If c = 0 , null hypothesis will never be rejected.

  67. • Choose c such that type I error probability of LRT is bound above by . . March 21th, 2013 Biostatistics 602 - Lecture 18 Hyun Min Kang test. Then we get a size sup Pr reject H sup c x sup Pr . 26 / 35 Hypothesis Testing . . . Properties of LRT Summary . Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • For example • If c = 1 , null hypothesis will always be rejected. • If c = 0 , null hypothesis will never be rejected. • Difference choice of c ∈ [0 , 1] give different tests. • The smaller the c , the smaller type I error. • The larger the c , the smaller the type II error.

  68. . Properties of LRT March 21th, 2013 Biostatistics 602 - Lecture 18 Hyun Min Kang test. Then we get a size sup Pr reject H sup sup . 26 / 35 Summary Recap . . . . Hypothesis Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • For example • If c = 1 , null hypothesis will always be rejected. • If c = 0 , null hypothesis will never be rejected. • Difference choice of c ∈ [0 , 1] give different tests. • The smaller the c , the smaller type I error. • The larger the c , the smaller the type II error. • Choose c such that type I error probability of LRT is bound above by α . Pr ( λ ( x ) ≤ c ) = β ( θ ) θ ∈ Ω 0 θ ∈ Ω 0

  69. . Summary March 21th, 2013 Biostatistics 602 - Lecture 18 Hyun Min Kang sup sup sup . Properties of LRT 26 / 35 . . . . . . . . . Recap . . Hypothesis Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . • For example • If c = 1 , null hypothesis will always be rejected. • If c = 0 , null hypothesis will never be rejected. • Difference choice of c ∈ [0 , 1] give different tests. • The smaller the c , the smaller type I error. • The larger the c , the smaller the type II error. • Choose c such that type I error probability of LRT is bound above by α . Pr ( λ ( x ) ≤ c ) = β ( θ ) θ ∈ Ω 0 θ ∈ Ω 0 = Pr ( reject H 0 ) = α θ ∈ Ω 0 Then we get a size α test.

  70. . n . . . . L x n i exp x i exp . n i x i We need to find MLE of over and . Hyun Min Kang Biostatistics 602 - Lecture 18 March 21th, 2013 . . . . . . . . . . . . . . Recap Hypothesis Testing . Summary Example of LRT . Problem . . i.i.d. H H For the LRT test and its power function . Solution 27 / 35 . . . . . . . . . . . . . . . . . . . . . . . . . . . ∼ N ( θ, σ 2 ) where σ 2 is known. Consider X 1 , · · · , X n

  71. . x i . . . . . L x n i exp n . exp n i x i We need to find MLE of over and . Hyun Min Kang Biostatistics 602 - Lecture 18 March 21th, 2013 . . . . . . . . . . . . . . Recap Hypothesis Testing . Summary Example of LRT Problem Solution . . i.i.d. H For the LRT test and its power function . 27 / 35 . . . . . . . . . . . . . . . . . . . . . . . . . . . ∼ N ( θ, σ 2 ) where σ 2 is known. Consider X 1 , · · · , X n : θ ≤ θ 0 H 0

  72. . x i . . . . . . L x n i exp n . exp n i x i We need to find MLE of over and . Hyun Min Kang Biostatistics 602 - Lecture 18 March 21th, 2013 . Solution . . . . . . . . . . . . Recap Hypothesis Testing . Summary Example of LRT . Problem . . i.i.d. For the LRT test and its power function 27 / 35 . . . . . . . . . . . . . . . . . . . . . . . . . . . ∼ N ( θ, σ 2 ) where σ 2 is known. Consider X 1 , · · · , X n : θ ≤ θ 0 H 0 : θ > θ 0 H 1

  73. . i . . . n n exp n x i For the LRT test and its power function We need to find MLE of over and . Hyun Min Kang Biostatistics 602 - Lecture 18 March 21th, 2013 . Solution 27 / 35 . Summary . Hypothesis Testing Recap Problem . . . . . . . . . i.i.d. . . . Example of LRT . . . . . . . . . . . . . . . . . . . . . . . . . . . ∼ N ( θ, σ 2 ) where σ 2 is known. Consider X 1 , · · · , X n : θ ≤ θ 0 H 0 : θ > θ 0 H 1 − ( x i − θ ) 2 1 [ ] ∏ √ L ( θ | x ) = 2 σ 2 2 πσ 2 exp i =1

  74. . exp . Solution . . . n We need to find MLE of i.i.d. over and . Hyun Min Kang Biostatistics 602 - Lecture 18 March 21th, 2013 For the LRT test and its power function 27 / 35 . Summary Recap . . . . . . . . . . . . Problem . Example of LRT Hypothesis Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . ∼ N ( θ, σ 2 ) where σ 2 is known. Consider X 1 , · · · , X n : θ ≤ θ 0 H 0 : θ > θ 0 H 1 − ( x i − θ ) 2 1 [ ] ∏ √ L ( θ | x ) = 2 σ 2 2 πσ 2 exp i =1 i =1 ( x i − θ ) 2 ( 1 ) n [ ∑ n ] √ − = 2 σ 2 2 πσ 2

  75. . . March 21th, 2013 Biostatistics 602 - Lecture 18 Hyun Min Kang exp n . . Solution . For the LRT test and its power function i.i.d. . . Problem . . . . . . . . . . . . Recap Hypothesis Testing 27 / 35 Summary Example of LRT . . . . . . . . . . . . . . . . . . . . . . . . . . . ∼ N ( θ, σ 2 ) where σ 2 is known. Consider X 1 , · · · , X n : θ ≤ θ 0 H 0 : θ > θ 0 H 1 − ( x i − θ ) 2 1 [ ] ∏ √ L ( θ | x ) = 2 σ 2 2 πσ 2 exp i =1 i =1 ( x i − θ ) 2 ( 1 ) n [ ∑ n ] √ − = 2 σ 2 2 πσ 2 We need to find MLE of θ over Ω = ( −∞ , ∞ ) and Ω 0 = ( −∞ , θ 0 ] .

  76. . i n i x i x i n n i x i n x i i The equation above minimizes when n i x i n x . Hyun Min Kang Biostatistics 602 - Lecture 18 March 21th, 2013 x i n . Summary . . . . . . . . . . Recap Hypothesis Testing . 28 / 35 , or . . . . . . . . . . . . . . . . . . . . . . . . . . . MLE of θ over Ω = ( −∞ , ∞ ) i =1 ( x i − θ ) 2 [ ∑ n ] To maximize L ( θ | x ) , we need to maximize exp − 2 σ 2 i =1 ( x i − θ ) 2 . equivalently to minimize ∑ n

  77. . x i n n n i x i n i The equation above minimizes when n n i x i n x . Hyun Min Kang Biostatistics 602 - Lecture 18 March 21th, 2013 . 28 / 35 . . Summary Hypothesis Testing . . . . . . Recap . . . , or . . . . . . . . . . . . . . . . . . . . . . . . . . . MLE of θ over Ω = ( −∞ , ∞ ) i =1 ( x i − θ ) 2 [ ∑ n ] To maximize L ( θ | x ) , we need to maximize exp − 2 σ 2 i =1 ( x i − θ ) 2 . equivalently to minimize ∑ n i + θ 2 − 2 θ x i ) ∑ ( x i − θ ) 2 ∑ ( x 2 = i =1 i =1

  78. . n . n n n i The equation above minimizes when i , or x i n x . Hyun Min Kang Biostatistics 602 - Lecture 18 March 21th, 2013 n 28 / 35 . Summary Hypothesis Testing Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MLE of θ over Ω = ( −∞ , ∞ ) i =1 ( x i − θ ) 2 [ ∑ n ] To maximize L ( θ | x ) , we need to maximize exp − 2 σ 2 i =1 ( x i − θ ) 2 . equivalently to minimize ∑ n i + θ 2 − 2 θ x i ) ∑ ( x i − θ ) 2 ∑ ( x 2 = i =1 i =1 n θ 2 − 2 θ ∑ ∑ x 2 = x i + i =1 i =1

  79. . , or March 21th, 2013 Biostatistics 602 - Lecture 18 Hyun Min Kang n i n n n . n 28 / 35 . . . . . . Summary . . . Hypothesis Testing . Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . . MLE of θ over Ω = ( −∞ , ∞ ) i =1 ( x i − θ ) 2 [ ∑ n ] To maximize L ( θ | x ) , we need to maximize exp − 2 σ 2 i =1 ( x i − θ ) 2 . equivalently to minimize ∑ n i + θ 2 − 2 θ x i ) ∑ ( x i − θ ) 2 ∑ ( x 2 = i =1 i =1 n θ 2 − 2 θ ∑ ∑ x 2 = x i + i =1 i =1 ∑ n The equation above minimizes when θ = ˆ θ = i =1 x i = x .

  80. • However, if x . . March 21th, 2013 Biostatistics 602 - Lecture 18 Hyun Min Kang if X if X X To summarize, . Therefore , the likelihood function will be an increasing function. , and , x does not fall into a valid range of n . Summary Hypothesis Testing Recap . . . . . . . . . . 29 / 35 . . . . . . . . . . . . . . . . . . . . . . . . . . . MLE of θ over Ω 0 = ( −∞ , θ 0 ] ∑ n • L ( θ | x ) is maximized at θ = = x if x ≤ θ 0 . i =1 x i

  81. . . March 21th, 2013 Biostatistics 602 - Lecture 18 Hyun Min Kang if X if X X To summarize, n 29 / 35 Summary . . . . . . . Hypothesis Testing . . . . Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . MLE of θ over Ω 0 = ( −∞ , θ 0 ] ∑ n • L ( θ | x ) is maximized at θ = = x if x ≤ θ 0 . i =1 x i • However, if x ≥ θ 0 , x does not fall into a valid range of ˆ θ 0 , and θ ≤ θ 0 , the likelihood function will be an increasing function. Therefore ˆ θ 0 = θ 0 .

  82. . . March 21th, 2013 Biostatistics 602 - Lecture 18 Hyun Min Kang To summarize, . n Summary 29 / 35 Hypothesis Testing . Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MLE of θ over Ω 0 = ( −∞ , θ 0 ] ∑ n • L ( θ | x ) is maximized at θ = = x if x ≤ θ 0 . i =1 x i • However, if x ≥ θ 0 , x does not fall into a valid range of ˆ θ 0 , and θ ≤ θ 0 , the likelihood function will be an increasing function. Therefore ˆ θ 0 = θ 0 . { X if X ≤ θ 0 ˆ θ 0 = θ 0 if X > θ 0

  83. if X n x exp exp exp n x if X Therefore, the likelihood test rejects the null hypothesis if and only if . exp c and x . Hyun Min Kang Biostatistics 602 - Lecture 18 March 21th, 2013 . 30 / 35 . . . . . . Likelihood ratio test . . . . Summary . Hypothesis Testing Recap . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 if X ≤ θ 0  λ ( x ) = L (ˆ i =1( xi − θ 0)2 θ 0 | x )  [ ] ∑ n  − = 2 σ 2 L (ˆ if X > θ 0 θ | x ) i =1( xi − x )2 [ ]  ∑ n  −  2 σ 2

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend