biostatistics 602 statistical inference
play

Biostatistics 602 - Statistical Inference March 19th, 2013 - PowerPoint PPT Presentation

. .. .. . . .. . . . . . .. . . .. . . . .. .. Biostatistics 602 - Statistical Inference March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang March 19th, 2013 Hyun Min Kang Asymptotic Evaluation of Point Estimators


  1. can also be represented that W n is close to Consistency implies that the probability of W n close to . Recap . are unknown as its asymptotic properties. When the sample size n approaches infinity, the behaviors of an estimator Asymptotic Evaluation of Point Estimators Summary . Asymptotic Efficiency Asymptotic Normality . . . . . . . . . . . . .. . . .. . . .. .. Definition - Consistency P . Pr W n March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang . 1 as n goes to approaches to . When W n n .. lim Pr W n n lim . ) means that, given any (converges in probability to P W n . . . .. . .. . . .. . . .. . . . . . .. . . .. . . .. . . . 4 / 33 .. .. .. . . .. . . . .. . . . .. . . .. . . . .. . . . . . . . . . . . . . . . . . . . . . . Let W n = W n ( X 1 , · · · , X n ) = W n ( X ) be a sequence of estimators for τ ( θ ) . We say W n is consistent for estimating τ ( θ ) if W n → τ ( θ ) under P θ for every θ ∈ Ω .

  2. can also be represented that W n is close to Consistency implies that the probability of W n close to . . Asymptotic Efficiency Asymptotic Normality Recap . . . . . . . . . . . .. . . .. Summary . .. .. . .. . . . When the sample size n approaches infinity, the behaviors of an estimator Asymptotic Evaluation of Point Estimators lim March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang . 1 as n goes to approaches to . When W n lim . P W n P . . Definition - Consistency . are unknown as its asymptotic properties. .. . . . . .. . .. .. . . .. . .. .. . . .. . . .. . . . . . .. . . .. . . .. . . .. . . . 4 / 33 . .. . . . .. . . . . . . . . . . . . . . . . . . . . . Let W n = W n ( X 1 , · · · , X n ) = W n ( X ) be a sequence of estimators for τ ( θ ) . We say W n is consistent for estimating τ ( θ ) if W n → τ ( θ ) under P θ for every θ ∈ Ω . → τ ( θ ) (converges in probability to τ ( θ ) ) means that, given any ϵ > 0 . n →∞ Pr ( | W n − τ ( θ ) | ≥ ϵ ) = 0 n →∞ Pr ( | W n − τ ( θ ) | < ϵ ) = 1

  3. Consistency implies that the probability of W n close to . .. Asymptotic Normality Recap . . . . . . . . . . . .. . . . . . .. . .. .. . . .. Asymptotic Efficiency Summary . lim March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang . 1 as n goes to approaches to lim P Asymptotic Evaluation of Point Estimators W n P . . Definition - Consistency . are unknown as its asymptotic properties. When the sample size n approaches infinity, the behaviors of an estimator . . .. . . .. . . . . . .. . .. .. . . .. . . .. . . . .. . .. . .. . . .. . . .. . . 4 / 33 . . . .. . . .. . . . . . . . . . . . . . . . . . . . . . Let W n = W n ( X 1 , · · · , X n ) = W n ( X ) be a sequence of estimators for τ ( θ ) . We say W n is consistent for estimating τ ( θ ) if W n → τ ( θ ) under P θ for every θ ∈ Ω . → τ ( θ ) (converges in probability to τ ( θ ) ) means that, given any ϵ > 0 . n →∞ Pr ( | W n − τ ( θ ) | ≥ ϵ ) = 0 n →∞ Pr ( | W n − τ ( θ ) | < ϵ ) = 1 When | W n − τ ( θ ) | < ϵ can also be represented that W n is close to τ ( θ ) .

  4. . .. . .. . . .. . . . Recap . .. . . .. . . . . . . . . . . . . Asymptotic Normality . P March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang lim lim P W n . Asymptotic Efficiency . Definition - Consistency . are unknown as its asymptotic properties. When the sample size n approaches infinity, the behaviors of an estimator Asymptotic Evaluation of Point Estimators Summary . .. .. . . . . .. . .. .. . .. . . . .. . . .. . . .. . 4 / 33 .. . . .. . . .. . . . . .. .. . .. . . . . . . . . . . . . . . . . . . . . . . . . . Let W n = W n ( X 1 , · · · , X n ) = W n ( X ) be a sequence of estimators for τ ( θ ) . We say W n is consistent for estimating τ ( θ ) if W n → τ ( θ ) under P θ for every θ ∈ Ω . → τ ( θ ) (converges in probability to τ ( θ ) ) means that, given any ϵ > 0 . n →∞ Pr ( | W n − τ ( θ ) | ≥ ϵ ) = 0 n →∞ Pr ( | W n − τ ( θ ) | < ϵ ) = 1 When | W n − τ ( θ ) | < ϵ can also be represented that W n is close to τ ( θ ) . Consistency implies that the probability of W n close to τ ( θ ) approaches to 1 as n goes to ∞ .

  5. • Chebychev’s Inequality Need to show that both Bias W n and Var W n converges to zero . . . . .. . . .. . . .. . . .. . . .. .. Recap . . . . . . . . . . MSE W n March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang Var W n W n Bias E W n .. Pr W n Pr W n Tools for proving consistency Summary . Asymptotic Efficiency Asymptotic Normality . . .. .. . .. . . .. . . . . . .. . . .. . . . .. . . . .. . . .. . . .. . .. . . . .. . . .. 5 / 33 . . . . . . . . . . . . . . . . . . . . . • Use definition (complicated)

  6. Need to show that both Bias W n and Var W n converges to zero . .. . . .. . . . . . .. . . .. . .. .. . Asymptotic Efficiency March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang Tools for proving consistency Summary . Asymptotic Normality .. Recap . . . . . . . . . . . .. . . . .. . . . . .. . . .. . . .. . . .. . . .. . . . .. . . .. .. . . .. 5 / 33 . .. . . . .. . . . . . . . . . . . . . . . . . . . . . . • Use definition (complicated) • Chebychev’s Inequality Pr (( W n − τ ( θ )) 2 ≥ ϵ 2 ) Pr ( | W n − τ ( θ ) | ≥ ϵ ) = E [ W n − τ ( θ )] 2 ≤ ϵ 2 = Bias 2 ( W n ) + Var ( W n ) MSE ( W n ) = ϵ 2 ϵ 2

  7. . . . . .. . . .. . . .. . . .. . . .. . . Asymptotic Efficiency March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang Tools for proving consistency Summary . Asymptotic Normality .. Recap . . . . . . . . . . . .. . . .. .. . . . . .. . . .. . . .. . . .. . . .. .. . . . . .. .. . . .. 5 / 33 . .. . . . . .. . . . . . . . . . . . . . . . . . . . . . • Use definition (complicated) • Chebychev’s Inequality Pr (( W n − τ ( θ )) 2 ≥ ϵ 2 ) Pr ( | W n − τ ( θ ) | ≥ ϵ ) = E [ W n − τ ( θ )] 2 ≤ ϵ 2 = Bias 2 ( W n ) + Var ( W n ) MSE ( W n ) = ϵ 2 ϵ 2 Need to show that both Bias ( W n ) and Var ( W n ) converges to zero

  8. . . . . .. . . .. . . .. . . .. . . .. .. . . . March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang . . Theorem 10.1.3 Theorem for consistency .. Summary . Asymptotic Efficiency Asymptotic Normality Recap . . . . . . . . . . . . .. .. .. . . . .. . . . . . .. . . .. . . . .. .. .. . .. . . .. . . . . . .. . . .. . 6 / 33 . . . . . . . . . . . . . . . . . . . . . If W n is a sequence of estimators of τ ( θ ) satisfying • lim n − > ∞ Bias ( W n ) = 0 . • lim n − > ∞ Var ( W n ) = 0 . for all θ , then W n is consistent for τ ( θ )

  9. . .. .. . . .. . . . . . .. . . .. . .. . .. . Theorem 5.5.2 March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang P . . . . Weak Law of Large Numbers Summary . Asymptotic Efficiency Asymptotic Normality Recap . . . . . . . . . . .. . . .. .. . . .. . . . . . .. . . .. . . . .. .. .. . . .. . . .. . . . . . .. . . .. . 7 / 33 . . . . . . . . . . . . . . . . . . . . . Let X 1 , · · · , X n be iid random variables with E ( X ) = µ and Var ( X ) = σ 2 < ∞ . Then X n converges in probability to µ . → µ . i.e. X n

  10. b n is also a consistent sequence of estimators of If W n is consistent for and g is a continuous function, then g W n is . Asymptotic Normality . . Theorem 10.1.5 . Consistent sequence of estimators Summary . Asymptotic Efficiency . . . . . . . . . . Recap . . .. . . .. . . .. sequences of constants satisfying . . . March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang . consistent for g . . . . . . . . Continuous Map Theorem . . a n W n Then U n . .. . .. .. . .. . . .. . . .. . . . . . .. . . .. . . .. . . . .. . . . .. . . .. . . .. . . .. . . .. . . .. . . .. 8 / 33 . . . . . . . . . . . . . . . . . . . . . Let W n is a consistent sequence of estimators of τ ( θ ) . Let a n , b n be 1 lim n →∞ a n = 1 2 lim n →∞ b n = 0 .

  11. If W n is consistent for and g is a continuous function, then g W n is . . . Consistent sequence of estimators Summary . Asymptotic Efficiency Asymptotic Normality Recap . . . . . . . . . . . .. . . .. . . .. . .. Theorem 10.1.5 sequences of constants satisfying . . March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang . consistent for g . . . . . . . . Continuous Map Theorem . . . . . .. . . .. .. . . .. . . .. . . . .. . .. . . .. . . .. . . . 8 / 33 . .. . . .. . . .. . . .. . . . .. . .. . . .. . . . . . . . . . . . . . . . . . . . . . . . Let W n is a consistent sequence of estimators of τ ( θ ) . Let a n , b n be 1 lim n →∞ a n = 1 2 lim n →∞ b n = 0 . Then U n = a n W n + b n is also a consistent sequence of estimators of τ ( θ ) .

  12. . . Recap . . . . . . . . . . . .. . . .. . Asymptotic Efficiency .. . . .. . . .. . Asymptotic Normality . .. . March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang . . Continuous Map Theorem . . Summary . . sequences of constants satisfying . . Theorem 10.1.5 . Consistent sequence of estimators . .. . . . . . .. . . .. . .. . . . .. . . .. . . . .. 8 / 33 .. .. . . .. . . .. . .. . . . .. . . .. . . . . . . . . . . . . . . . . . . . . . . . Let W n is a consistent sequence of estimators of τ ( θ ) . Let a n , b n be 1 lim n →∞ a n = 1 2 lim n →∞ b n = 0 . Then U n = a n W n + b n is also a consistent sequence of estimators of τ ( θ ) . If W n is consistent for θ and g is a continuous function, then g ( W n ) is consistent for g ( θ ) .

  13. . . . . . . . . . . . . . .. . . .. . .. Asymptotic Normality . . .. . . .. . . Recap Asymptotic Efficiency . 1 Propose a consistent estimator of the median. March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang c where c is constant. 2 Propose a consistent estimator of Pr X . . . . . i.i.d. . . Problem . Example - Exponential Family Summary .. .. . . .. . . .. . . .. . .. .. . . .. . . .. . . . 9 / 33 . . . . .. . . .. . . . .. . . .. . . .. .. . . . . . . . . . . . . . . . . . . . . . Suppose X 1 , · · · , X n ∼ Exponential ( β ) .

  14. . . . . . . . . . . . . . .. . . .. . .. Asymptotic Normality . . .. . . .. . . Recap Asymptotic Efficiency . 1 Propose a consistent estimator of the median. March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang c where c is constant. 2 Propose a consistent estimator of Pr X . . . . . i.i.d. . . Problem . Example - Exponential Family Summary .. .. . . .. . . .. . . .. . .. .. . . .. . . .. . . . 9 / 33 . . . . .. . . .. . . . .. . . .. . . .. .. . . . . . . . . . . . . . . . . . . . . . Suppose X 1 , · · · , X n ∼ Exponential ( β ) .

  15. . . .. . . .. . . .. . . . . . . . . . . . .. . . .. . . .. . Recap . . March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang . . 1 Propose a consistent estimator of the median. . i.i.d. Asymptotic Normality . . Problem . Example - Exponential Family Summary . Asymptotic Efficiency . .. .. .. . .. . . .. . . . . . .. . . .. . . . .. . . . .. . . .. . . .. 9 / 33 . .. . . .. . . .. . . . . . . . . . . . . . . . . . . . . . . Suppose X 1 , · · · , X n ∼ Exponential ( β ) . 2 Propose a consistent estimator of Pr ( X ≤ c ) where c is constant.

  16. c X is consistent for . Asymptotic Normality Recap . . . . . . . . . . . .. . . .. . . . .. . . .. . .. .. Asymptotic Efficiency Summary . Pr X March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang g c e c e e By continuous mapping Theorem, g X . is continuous function of c e , As X is consistent for c . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . . 10 / 33 .. . . .. . . .. . . .. . . .. . .. . . . .. . . . . . . . . . . . . . . . . . . . . . . Consistent estimator of Pr ( X ≤ c ) ∫ c 1 β e − x / β dx Pr ( X ≤ c ) = 0

  17. As X is consistent for c X is consistent for . . . . . . . . . . . . .. . . .. . . Asymptotic Normality .. . . .. . .. .. . Recap . Asymptotic Efficiency Pr X March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang g c e c e .. By continuous mapping Theorem, g X . is continuous function of c e , Summary . . . . .. . . . .. . . .. . . .. . . .. . . .. . . . 10 / 33 . . . . .. .. . .. . .. . . . .. . . .. . .. . . . . . . . . . . . . . . . . . . . . . Consistent estimator of Pr ( X ≤ c ) ∫ c 1 β e − x / β dx Pr ( X ≤ c ) = 0 1 − e − c / β =

  18. c X is consistent for . . .. . . .. . . .. .. . . .. .. . .. . . . .. c March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang g c e Pr X . . . . . . . . . . e By continuous mapping Theorem, g X Summary . Asymptotic Efficiency Asymptotic Normality Recap . . . .. .. . . . .. . . . . . .. . . .. . . . 10 / 33 .. . . . .. . . . .. . .. .. . .. . . .. . . . . . . . . . . . . . . . . . . . . . . . Consistent estimator of Pr ( X ≤ c ) ∫ c 1 β e − x / β dx Pr ( X ≤ c ) = 0 1 − e − c / β = As X is consistent for β , 1 − e − c / β is continuous function of β .

  19. . .. . . .. . .. .. . . .. . . .. . . . . Asymptotic Normality March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang Summary . Asymptotic Efficiency Recap . . . . . . . . . . . . .. . . .. .. . . . . . .. . .. .. . . .. . . .. . . .. . . . . . .. .. . . .. 10 / 33 . .. . . . . .. . . . . . . . . . . . . . . . . . . . . . Consistent estimator of Pr ( X ≤ c ) ∫ c 1 β e − x / β dx Pr ( X ≤ c ) = 0 1 − e − c / β = As X is consistent for β , 1 − e − c / β is continuous function of β . By continuous mapping Theorem, g ( X ) = 1 − e − c / X is consistent for Pr ( X ≤ c ) = 1 − e − c / β = g ( β )

  20. . .. . .. . . .. . . . Recap . .. . . .. . . . . . . . . . . . . Asymptotic Normality . n March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang is consistent for p by Law of Large Numbers. c I X i i n Asymptotic Efficiency Y i i n n Y i.i.d. Summary . .. .. . . .. . . .. . . .. . .. . . . .. . . .. . . .. 11 / 33 . . .. . . .. . . .. . . .. .. . . . . .. . . . . . . . . . . . . . . . . . . . . . . Consistent estimator of Pr ( X ≤ c ) - Alternative Method Define Y i = I ( X i ≤ c ) . Then Y i ∼ Bernoulli ( p ) where p = Pr ( X ≤ c ) .

  21. . .. .. . . .. . . . . . .. .. . .. . . . .. . n March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang is consistent for p by Law of Large Numbers. n n n Y . i.i.d. Summary . Asymptotic Efficiency Asymptotic Normality Recap . . . . . . . . . . .. . . .. .. . .. . .. . . . . . .. . . .. . . . 11 / 33 .. . . . . . .. .. . . .. . .. . . .. . . . . . . . . . . . . . . . . . . . . . . . Consistent estimator of Pr ( X ≤ c ) - Alternative Method Define Y i = I ( X i ≤ c ) . Then Y i ∼ Bernoulli ( p ) where p = Pr ( X ≤ c ) . 1 Y i = 1 ∑ ∑ = I ( X i ≤ c ) i =1 i =1

  22. . .. .. . . .. . . . . . .. . . .. .. . . .. . Theorem 10.1.6 - Consistency of MLEs March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang i.i.d. Suppose X i . . . . Consistency of MLEs Summary . Asymptotic Efficiency Asymptotic Normality Recap . . . . . . . . . . .. . . .. .. . . .. . . . . . .. . . .. . . . .. .. .. . . .. . . .. . . . . . .. . . .. . 12 / 33 . . . . . . . . . . . . . . . . . . . . . ∼ f ( x | θ ) . Let ˆ θ be the MLE of θ , and τ ( θ ) be a continuous function of θ . Then under ”regularity conditions” on f ( x | θ ) , the MLE of τ ( θ ) (i.e. τ (ˆ θ ) ) is consistent for τ ( θ ) .

  23. . . Recap . . . . . . . . . . . .. . . .. . Asymptotic Efficiency .. . . .. . . .. . Asymptotic Normality . .. : ”asymptotic mean” March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang . n We denote W n : ”asymptotic variance” • • Summary d where d . . Definition: Asymptotic Normality . Asymptotic Normality . .. . . .. . . .. . . .. . .. . . . .. . . .. . . . . .. . .. . . .. . . .. . . .. . .. . . .. . . 13 / 33 . . . . . . . . . . . . . . . . . . . . . A statistic (or an estimator) W n ( X ) is asymptotically normal if √ n ( W n − τ ( θ )) → N (0 , ν ( θ )) for all θ → stands for ”converge in distribution”

  24. . . .. . . .. . . .. . . . . . . . . . . . .. . . .. .. . .. . Recap . where March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang . n We denote W n d d Asymptotic Normality . . Definition: Asymptotic Normality . Asymptotic Normality Summary . Asymptotic Efficiency . . .. .. . .. . . .. . . . .. . .. . . .. . . . . . . . .. . . .. . . .. . .. .. . .. . . 13 / 33 . . . . . . . . . . . . . . . . . . . . . . . A statistic (or an estimator) W n ( X ) is asymptotically normal if √ n ( W n − τ ( θ )) → N (0 , ν ( θ )) for all θ → stands for ”converge in distribution” • τ ( θ ) : ”asymptotic mean” • ν ( θ ) : ”asymptotic variance”

  25. . . .. . . .. . . .. . . . . . . . . . . . .. . . .. . . .. . Recap . d March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang . n d where . Asymptotic Normality . Definition: Asymptotic Normality . Asymptotic Normality Summary . Asymptotic Efficiency . .. .. .. . . . . .. . . . .. . .. . . .. . . . .. . . . .. . . .. . . . .. 13 / 33 . . .. . . .. .. . . . . . . . . . . . . . . . . . . . . . . A statistic (or an estimator) W n ( X ) is asymptotically normal if √ n ( W n − τ ( θ )) → N (0 , ν ( θ )) for all θ → stands for ”converge in distribution” • τ ( θ ) : ”asymptotic mean” • ν ( θ ) : ”asymptotic variance” ( ) τ ( θ ) , ν ( θ ) We denote W n ∼ AN

  26. 1 Y n X n . Theorem 5.5.17 - Slutsky’s Theorem . d n X n X i.i.d. Assume X i . . Central Limit Theorem . . Central Limit Theorem Summary . Asymptotic Efficiency Asymptotic Normality Recap . . . . . . . . . . . .. . . . . aX March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang a X d Y n 2 X n . . d .. . . a , where a is a constant, P X , Y n d If X n . . . . . .. . .. .. . . .. . . .. . . .. . . . . . .. . . .. . . .. . . .. . . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . 14 / 33 . . . . . . . . . . . . . . . . . . . . . ∼ f ( x | θ ) with finite mean µ ( θ ) and variance σ 2 ( θ ) . µ ( θ ) , σ 2 ( θ ) ( ) ∼ AN

  27. 1 Y n X n . Theorem 5.5.17 - Slutsky’s Theorem . d n X i.i.d. Assume X i . . Central Limit Theorem . . Central Limit Theorem Summary . Asymptotic Efficiency Asymptotic Normality Recap .. . .. . . . . . aX March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang a X d Y n 2 X n . . d . . . a , where a is a constant, P X , Y n d If X n . . . . .. . . . . . . . . . . . . . . .. . . .. . . .. . . .. . .. .. . . .. . . .. . . .. . . .. . . .. . 14 / 33 .. . . .. . . .. . . .. . . .. . . . . .. . . . . . . . . . . . . . . . . . . . . . . ∼ f ( x | θ ) with finite mean µ ( θ ) and variance σ 2 ( θ ) . µ ( θ ) , σ 2 ( θ ) ( ) ∼ AN ⇔ √ n N (0 , σ 2 ( θ )) ( X − µ ( θ ) ) →

  28. 1 Y n X n . Asymptotic Efficiency Assume X i . . Central Limit Theorem . Central Limit Theorem Summary . Asymptotic Normality X Recap . . . . . . . . . . . .. .. . .. . . .. i.i.d. d n . March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang a X d Y n 2 X n . aX . d . . P d If X n . . Theorem 5.5.17 - Slutsky’s Theorem . . . .. . . . .. . . .. . . .. . .. .. . . .. . . .. . . .. . . . 14 / 33 . . .. . . .. .. . . . .. . . .. . .. . . . .. . . . . . . . . . . . . . . . . . . . . . . . ∼ f ( x | θ ) with finite mean µ ( θ ) and variance σ 2 ( θ ) . µ ( θ ) , σ 2 ( θ ) ( ) ∼ AN ⇔ √ n N (0 , σ 2 ( θ )) ( X − µ ( θ ) ) → → X , Y n → a , where a is a constant,

  29. . Recap . . Central Limit Theorem . Central Limit Theorem Summary . Asymptotic Efficiency Asymptotic Normality . . . . . . . . . . i.i.d. . .. .. . .. . . .. . Assume X i X .. d March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang a X d Y n 2 X n . . n . P d If X n . . Theorem 5.5.17 - Slutsky’s Theorem . d . . . .. . . . .. . . .. . . . . . .. . . .. . . .. . . . .. .. . . .. . . .. . .. .. . . .. . . .. . . . .. . 14 / 33 . . . . . . . . . . . . . . . . . . . . . . ∼ f ( x | θ ) with finite mean µ ( θ ) and variance σ 2 ( θ ) . µ ( θ ) , σ 2 ( θ ) ( ) ∼ AN ⇔ √ n N (0 , σ 2 ( θ )) ( X − µ ( θ ) ) → → X , Y n → a , where a is a constant, 1 Y n · X n → aX

  30. . . . Central Limit Theorem Summary . Asymptotic Efficiency Asymptotic Normality Recap . . . . . . . . . . .. . . .. .. . . .. . . .. Central Limit Theorem . . P March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang d . . d . . d Assume X i If X n . . Theorem 5.5.17 - Slutsky’s Theorem . d n X i.i.d. . . .. .. . . . .. . . .. . . . . . .. . . .. . . .. . . .. 14 / 33 . . .. . .. . . . .. . .. . . .. . . .. . . . .. . . . . . . . . . . . . . . . . . . . . . ∼ f ( x | θ ) with finite mean µ ( θ ) and variance σ 2 ( θ ) . µ ( θ ) , σ 2 ( θ ) ( ) ∼ AN ⇔ √ n N (0 , σ 2 ( θ )) ( X − µ ( θ ) ) → → X , Y n → a , where a is a constant, 1 Y n · X n → aX 2 X n + Y n → X + a

  31. p p . . Y i.i.d. Summary . Asymptotic Efficiency Asymptotic Normality Recap . . . . . . . . . . . .. n . .. . . .. . . .. n i . c March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang n p n Var Y E Y I X i Y i i n n is consistent for p . Therefore, c I X i i n n . .. .. .. . .. . . .. . . .. . . . .. . .. . . .. . . .. . . . . . .. . .. . . .. . . .. . . . . .. . . .. . 15 / 33 . . . . . . . . . . . . . . . . . . . . . Example - Estimator of Pr ( X ≤ c ) Define Y i = I ( X i ≤ c ) . Then Y i ∼ Bernoulli ( p ) where p = Pr ( X ≤ c ) .

  32. p p . . Asymptotic Efficiency Asymptotic Normality Recap . . . . . . . . . . . .. . . .. Summary . .. . .. .. . . . Y i.i.d. c March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang n p n Var Y E Y I X i . i n n is consistent for p . Therefore, n n n n .. . . . . .. . . .. . . .. . .. .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . 15 / 33 . . . .. . . . . . . . . . . . . . . . . . . . . . Example - Estimator of Pr ( X ≤ c ) Define Y i = I ( X i ≤ c ) . Then Y i ∼ Bernoulli ( p ) where p = Pr ( X ≤ c ) . 1 Y i = 1 ∑ ∑ = I ( X i ≤ c ) i =1 i =1

  33. . . .. . . .. .. . .. . . . . . . . . . . . .. . . .. . . .. . Recap . is consistent for p . Therefore, March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang n n n n n Asymptotic Normality n n n Y i.i.d. Summary . Asymptotic Efficiency . . .. . . .. . . . .. . .. .. . . .. . . .. . . . 15 / 33 .. .. . . . .. . . .. . . . . .. . .. . . . . . . . . . . . . . . . . . . . . . . . . Example - Estimator of Pr ( X ≤ c ) Define Y i = I ( X i ≤ c ) . Then Y i ∼ Bernoulli ( p ) where p = Pr ( X ≤ c ) . 1 Y i = 1 ∑ ∑ = I ( X i ≤ c ) i =1 i =1 1 ( E ( Y ) , Var ( Y ) ) ∑ I ( X i ≤ c ) ∼ AN i =1 ( p , p (1 − p ) ) = AN =

  34. . . . . .. . . .. . .. . . . .. . .. .. . .. . . . . . . . . . . .. n March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang d n X d n X X n Recap By Central Limit Theorem, n Example Summary . Asymptotic Efficiency Asymptotic Normality . . . .. . .. . . .. . . . . . .. . . .. . . . 16 / 33 .. . .. . . .. . . .. . . .. . . .. . . .. . . . . . . . . . . . . . . . . . . . . . . Let X 1 , · · · , X n be iid samples with finite mean µ and variance σ 2 . Define 1 ∑ S 2 ( X i − X ) 2 n = n − 1 i =1

  35. . . . . .. . . .. . .. . . .. .. . . .. . .. . . . . . . . . . . .. n March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang d n X d n X X n Recap By Central Limit Theorem, n Example Summary . Asymptotic Efficiency Asymptotic Normality . . . .. . .. . . .. . . . .. . .. . . .. . . . . . . .. . . .. . . .. . . .. . 16 / 33 . .. . . .. . . . . . . . . . . . . . . . . . . . . . Let X 1 , · · · , X n be iid samples with finite mean µ and variance σ 2 . Define 1 ∑ S 2 ( X i − X ) 2 n = n − 1 i =1 µ, σ 2 ( ) ∼ AN

  36. . . . .. . . .. . .. .. .. . .. . . .. . . . .. X n March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang d n X d n By Central Limit Theorem, . . . . . . . . . . n Example Summary . Asymptotic Efficiency Asymptotic Normality Recap . . . .. . .. . . . . . . .. . .. . . .. . . . .. . .. .. . . .. . . .. . . . 16 / 33 . .. .. . . . . . . . . . . . . . . . . . . . . . . . . Let X 1 , · · · , X n be iid samples with finite mean µ and variance σ 2 . Define 1 ∑ S 2 ( X i − X ) 2 n = n − 1 i =1 µ, σ 2 ( ) ∼ AN ⇔ √ n ( X − µ ) N (0 , σ 2 ) →

  37. . .. .. . . .. . .. . . . .. . . .. . . . .. . By Central Limit Theorem, March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang d d n X n n . Example Summary . Asymptotic Efficiency Asymptotic Normality Recap . . . . . . . . . . .. . . .. .. . . .. . . .. . . . .. . . .. . . . 16 / 33 .. .. . . .. . . .. . . . . . . .. . .. . . . . . . . . . . . . . . . . . . . . . . Let X 1 , · · · , X n be iid samples with finite mean µ and variance σ 2 . Define 1 ∑ S 2 ( X i − X ) 2 n = n − 1 i =1 µ, σ 2 ( ) ∼ AN ⇔ √ n ( X − µ ) N (0 , σ 2 ) → √ n ( X − µ ) ⇔ → N (0 , 1) σ

  38. . . Recap . . . . . . . . . . . .. . . .. . Asymptotic Efficiency .. . . .. . . .. . Asymptotic Normality . .. . March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang . P S n n X Therefore, By Slutsky’s Theorem P Summary S n P S n P We showed previously S n S n S n Example (cont’d) . .. . . .. . . .. . . .. . .. . . . .. . . .. . . . . .. . .. . . .. . . .. . . .. . .. . . .. . . 17 / 33 . . . . . . . . . . . . . . . . . . . . . √ n ( X − µ ) √ n ( X − µ ) σ = σ

  39. . .. . .. . . .. . . . Recap . .. . . .. . . . . . . . . . . . . Asymptotic Normality . Therefore, By Slutsky’s Theorem March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang . P S n n X P Asymptotic Efficiency P P n S n S n Example (cont’d) Summary . .. .. . . . .. .. . . .. . .. . . . .. . . .. . . .. . 17 / 33 . . . .. . . .. . . .. . . .. .. . .. . . . . . . . . . . . . . . . . . . . . . . . . √ n ( X − µ ) √ n ( X − µ ) σ = σ → σ 2 ⇒ S n We showed previously S 2 → σ ⇒ σ / S n → 1 .

  40. . . .. . . .. . . .. . . . . . . . . . . . .. . . .. . . .. . Recap . P March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang P S n Therefore, By Slutsky’s Theorem P P Asymptotic Normality n S n S n Example (cont’d) Summary . Asymptotic Efficiency . .. .. .. . . . . .. . . . .. . .. . . .. . . . .. . . . .. . . .. . . .. . . 17 / 33 .. . . .. .. . . . . . . . . . . . . . . . . . . . . . . . √ n ( X − µ ) √ n ( X − µ ) σ = σ → σ 2 ⇒ S n We showed previously S 2 → σ ⇒ σ / S n → 1 . √ n ( X − µ ) → N (0 , 1) .

  41. . .. .. . . .. . . . . . .. . .. .. . . . .. . Theorem 5.5.24 - Delta Method March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang n n . . . . Delta Method Summary . Asymptotic Efficiency Asymptotic Normality Recap . . . . . . . . . . .. . . .. .. .. . .. . . . . . .. . . .. . . . . .. . . . .. . . . .. . 18 / 33 .. . . .. . . . .. . . . . . . . . . . . . . . . . . . . . . ( ) θ, ν ( θ ) Assume W n ∼ AN . If a function g satisfies g ′ ( θ ) ̸ = 0 , then ( g ( θ ) , [ g ′ ( θ )] 2 ν ( θ ) ) g ( W n ) ∼ AN

  42. p p y , then X g X By central limit Theorem, n p X n d p p p n X n i.i.d. y Delta Method - Example Summary . Asymptotic Efficiency Asymptotic Normality Recap . . . . . . . . . . . .. . .. Define g y . . p March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang n p p p p p n p X g p g p X X By Delta Method, y y y g y g X . .. . . . . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . .. .. . . .. . . .. . . .. . . .. . . .. . . .. . . 19 / 33 . . . . . . . . . . . . . . . . . . . . . ∼ Bernoulli ( p ) where p ̸ = 1 X 1 , · · · , X n 2 , we want to know the asymptotic distribution of X (1 − X ) .

  43. p p y , then X g X . Define g y n p X n d i.i.d. Delta Method - Example Summary Asymptotic Efficiency . Asymptotic Normality Recap . . . . . . . . . . . .. . .. .. . . y X . n March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang n p p p p p p g X . p g p g p X X By Delta Method, y y y g y .. . . .. .. . . .. . . .. . . .. . . . . . .. . . .. . . .. . . .. . . . .. .. . . . .. . . .. . . .. . . .. . . .. . 19 / 33 . . . . . . . . . . . . . . . . . . . . . ∼ Bernoulli ( p ) where p ̸ = 1 X 1 , · · · , X n 2 , we want to know the asymptotic distribution of X (1 − X ) . By central limit Theorem, √ n ( X n − p ) → N (0 , 1) √ p (1 − p )

  44. g X . Asymptotic Efficiency y Define g y n d i.i.d. Delta Method - Example Summary . Asymptotic Normality X Recap . . . . . . . . . . . .. .. . .. . . .. y , then X g X . . n March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang n p p p p p p g y p g p g p X X By Delta Method, y y y . . .. .. .. . . .. . . .. . . .. . . . . . .. . . .. . . .. . . .. . . . 19 / 33 . .. . .. . . .. . . .. . . .. . . . . .. . . . . . . . . . . . . . . . . . . . . . ∼ Bernoulli ( p ) where p ̸ = 1 X 1 , · · · , X n 2 , we want to know the asymptotic distribution of X (1 − X ) . By central limit Theorem, √ n ( X n − p ) → N (0 , 1) √ p (1 − p ) ( p , p (1 − p ) ) ⇔ X n ∼ AN

  45. . . i.i.d. Delta Method - Example Summary . Asymptotic Efficiency Asymptotic Normality Recap . . . . . . . . . . .. n . . .. . . .. . . .. d g y . n March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang n p p p p p p y p g p g p X X g X By Delta Method, y y . .. .. . . . .. . . .. . . .. . .. .. . . .. . . .. . . .. . . . 19 / 33 . .. . .. . . .. . . . .. . . .. . . .. . . . . . . . . . . . . . . . . . . . . . . . ∼ Bernoulli ( p ) where p ̸ = 1 X 1 , · · · , X n 2 , we want to know the asymptotic distribution of X (1 − X ) . By central limit Theorem, √ n ( X n − p ) → N (0 , 1) √ p (1 − p ) ( p , p (1 − p ) ) ⇔ X n ∼ AN Define g ( y ) = y (1 − y ) , then X (1 − X ) = g ( X ) .

  46. . . . Asymptotic Efficiency Asymptotic Normality Recap . . . . . . . . . . . .. . .. Delta Method - Example .. . .. . . .. . . Summary i.i.d. . p March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang n p p p p n d p p g p g p X X g X By Delta Method, n .. . . . . . .. . . .. . . .. . .. .. . . .. . . .. . . .. 19 / 33 .. . . . .. . . .. . . . .. . . . .. . . .. . . . . . . . . . . . . . . . . . . . . . . ∼ Bernoulli ( p ) where p ̸ = 1 X 1 , · · · , X n 2 , we want to know the asymptotic distribution of X (1 − X ) . By central limit Theorem, √ n ( X n − p ) → N (0 , 1) √ p (1 − p ) ( p , p (1 − p ) ) ⇔ X n ∼ AN Define g ( y ) = y (1 − y ) , then X (1 − X ) = g ( X ) . g ′ ( y ) = ( y − y 2 ) ′ = 1 − 2 y

  47. . .. . .. . . .. . .. . Recap . .. . . .. . . . . . . . . . . . . Asymptotic Normality . p March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang n p p p p Asymptotic Efficiency n By Delta Method, n d i.i.d. Delta Method - Example Summary . .. . . . . . .. . .. . .. . .. . . . .. . . .. . . .. 19 / 33 .. . .. . . . .. . . .. . . .. . . . .. . . . . . . . . . . . . . . . . . . . . . . . ∼ Bernoulli ( p ) where p ̸ = 1 X 1 , · · · , X n 2 , we want to know the asymptotic distribution of X (1 − X ) . By central limit Theorem, √ n ( X n − p ) → N (0 , 1) √ p (1 − p ) ( p , p (1 − p ) ) ⇔ X n ∼ AN Define g ( y ) = y (1 − y ) , then X (1 − X ) = g ( X ) . g ′ ( y ) = ( y − y 2 ) ′ = 1 − 2 y ( g ( p ) , [ g ′ ( p )] 2 p (1 − p ) ) g ( X ) = X (1 − X ) ∼ AN

  48. . .. .. . .. .. . . . . . .. . . .. . . . .. . d March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang n n By Delta Method, n i.i.d. . Delta Method - Example Summary . Asymptotic Efficiency Asymptotic Normality Recap . . . . . . . . . . .. . . .. .. . . .. . . .. . . . .. . . .. . . . 19 / 33 .. . .. . . . .. . . .. . . .. . . .. . . . . . . . . . . . . . . . . . . . . . . . ∼ Bernoulli ( p ) where p ̸ = 1 X 1 , · · · , X n 2 , we want to know the asymptotic distribution of X (1 − X ) . By central limit Theorem, √ n ( X n − p ) → N (0 , 1) √ p (1 − p ) ( p , p (1 − p ) ) ⇔ X n ∼ AN Define g ( y ) = y (1 − y ) , then X (1 − X ) = g ( X ) . g ′ ( y ) = ( y − y 2 ) ′ = 1 − 2 y ( g ( p ) , [ g ′ ( p )] 2 p (1 − p ) ) g ( X ) = X (1 − X ) ∼ AN ( p (1 − p ) , (1 − 2 p ) 2 p (1 − p ) ) = AN

  49. . . Recap . . . . . . . . . . . .. . . .. . Asymptotic Efficiency .. . . .. . . .. . Asymptotic Normality . .. 1 Central Limit Theorem March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang 3 Delta Method (Theorem 5.5.24) . . 2 Slutsky Theorem . . Summary . Tools to show asymptotic normality n W n for all d n W n Asymptotic Normality .. . . . .. . . .. . . .. . .. . . . .. . . .. . . . . .. .. .. . . .. . . .. . . . . .. . . .. . . 20 / 33 . . . . . . . . . . . . . . . . . . . . . Given a statistic W n ( X ) , for example X , s 2 X , e − X

  50. . .. . .. . . .. . . . Recap . .. .. . .. . . . . . . . . . . . . Asymptotic Normality . . March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang 3 Delta Method (Theorem 5.5.24) . . 2 Slutsky Theorem 1 Central Limit Theorem Asymptotic Efficiency . . Tools to show asymptotic normality n d Asymptotic Normality Summary . .. . . . . . .. .. . . .. . .. . . . .. . . .. . . .. 20 / 33 . . . . .. . . .. . .. .. . . . .. . . .. . . . . . . . . . . . . . . . . . . . . . . Given a statistic W n ( X ) , for example X , s 2 X , e − X √ n ( W n − τ ( θ )) → N (0 , ν ( θ )) for all θ ( τ ( θ ) , ν ( θ ) ) ⇐ ⇒ W n ∼ AN

  51. . . . . . . . . . . . . . .. . . .. . .. Asymptotic Normality . . .. . . .. . . Recap Asymptotic Efficiency . . March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang 3 Delta Method (Theorem 5.5.24) . . 2 Slutsky Theorem . . 1 Central Limit Theorem . . Tools to show asymptotic normality n d Asymptotic Normality Summary .. .. . . . . .. .. . . .. . .. . . . .. . . .. . . .. 20 / 33 .. . . . . . .. . . .. . . .. . .. . . . .. . . . . . . . . . . . . . . . . . . . . . Given a statistic W n ( X ) , for example X , s 2 X , e − X √ n ( W n − τ ( θ )) → N (0 , ν ( θ )) for all θ ( τ ( θ ) , ν ( θ ) ) ⇐ ⇒ W n ∼ AN

  52. . . . . . . . . . . . . . .. . . .. . .. Asymptotic Normality . . .. . . .. . . Recap Asymptotic Efficiency . . March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang 3 Delta Method (Theorem 5.5.24) . . 2 Slutsky Theorem . . 1 Central Limit Theorem . . Tools to show asymptotic normality n d Asymptotic Normality Summary .. .. . . . . .. .. . . .. . .. . . . .. . . .. . . .. 20 / 33 .. . . . . . .. . . .. . . .. . .. . . . .. . . . . . . . . . . . . . . . . . . . . . Given a statistic W n ( X ) , for example X , s 2 X , e − X √ n ( W n − τ ( θ )) → N (0 , ν ( θ )) for all θ ( τ ( θ ) , ν ( θ ) ) ⇐ ⇒ W n ∼ AN

  53. . . . . . . . . . . . . . .. . . .. . .. Asymptotic Normality . . .. . . .. . . Recap Asymptotic Efficiency . . March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang 3 Delta Method (Theorem 5.5.24) . . 2 Slutsky Theorem . . 1 Central Limit Theorem . . Tools to show asymptotic normality n d Asymptotic Normality Summary .. .. . . . . .. .. . . .. . .. . . . .. . . .. . . .. 20 / 33 .. . . . . . .. . . .. . . .. . .. . . . .. . . . . . . . . . . . . . . . . . . . . . Given a statistic W n ( X ) , for example X , s 2 X , e − X √ n ( W n − τ ( θ )) → N (0 , ν ( θ )) for all θ ( τ ( θ ) , ν ( θ ) ) ⇐ ⇒ W n ∼ AN

  54. For example, in order to get the asymptotic distribution of n X i , X i , then E Y Var Y . Using Central Limit Theorem Summary . Asymptotic Efficiency Asymptotic Normality Recap . . . . . . . . . . .. . . . .. . . .. . . .. n i n Y March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang n Var X E X n Y i . i n n X i i n n define Y i . .. .. .. . .. . . .. . . .. . . . . . .. . . .. . . .. . . . .. 21 / 33 . . .. . . .. . . .. . . .. . .. . . .. . . . . . . . . . . . . . . . . . . . . . . . µ ( θ ) , σ 2 ( θ ) ( ) X ∼ AN where µ ( θ ) = E ( X ) , and σ 2 ( θ ) = Var ( X ) .

  55. X i , then E Y Var Y . . Asymptotic Efficiency Asymptotic Normality Recap . . . . . . . . . . . .. . .. Summary . . .. . .. .. . . . n Using Central Limit Theorem Y i March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang n Var X E X n Y i . n n X i i n n define Y i n .. . . . . .. . . .. . . .. . .. .. . . .. . . .. . . . .. . . . . .. . . .. . . .. . . .. . .. . . .. . 21 / 33 . . . . . . . . . . . . . . . . . . . . . µ ( θ ) , σ 2 ( θ ) ( ) X ∼ AN where µ ( θ ) = E ( X ) , and σ 2 ( θ ) = Var ( X ) . For example, in order to get the asymptotic distribution of 1 i =1 X 2 ∑ n i ,

  56. E Y Var Y . .. . .. . . .. . . . Recap . .. . . .. . . . . . . . . . . . . Asymptotic Efficiency Asymptotic Normality n March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang n Var X E X n n . i n n n n Using Central Limit Theorem Summary . .. .. . . . . .. .. . . .. . .. . . . .. . . .. . . .. 21 / 33 .. . . . .. . . .. . . . .. . .. . . . .. . . . . . . . . . . . . . . . . . . . . . . µ ( θ ) , σ 2 ( θ ) ( ) X ∼ AN where µ ( θ ) = E ( X ) , and σ 2 ( θ ) = Var ( X ) . For example, in order to get the asymptotic distribution of 1 i =1 X 2 ∑ n i , define Y i = X 2 i , then 1 1 ∑ X 2 ∑ = Y i = Y i =1 i =1

  57. . .. . .. . . .. .. . . Recap . .. . . .. . . . . . . . . . . . . Asymptotic Normality . n March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang n Var X E X n n Asymptotic Efficiency i n n n n Using Central Limit Theorem Summary . .. . . . . . .. . .. . .. . .. . . . .. . . .. . . .. 21 / 33 . .. . . . .. .. . . .. . . . . .. . . .. . . . . . . . . . . . . . . . . . . . . . . µ ( θ ) , σ 2 ( θ ) ( ) X ∼ AN where µ ( θ ) = E ( X ) , and σ 2 ( θ ) = Var ( X ) . For example, in order to get the asymptotic distribution of 1 i =1 X 2 ∑ n i , define Y i = X 2 i , then 1 1 ∑ X 2 ∑ = Y i = Y i =1 i =1 ( E Y , Var ( Y ) ) ∼ AN

  58. . . .. . .. .. . . .. . . . . . . . . . . . .. . . .. . . .. . Recap . i March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang n n n n n Asymptotic Normality n n n Using Central Limit Theorem Summary . Asymptotic Efficiency . . .. .. . .. . . .. . . . .. . .. . . .. . . . . . .. . .. . . .. . . .. . . . 21 / 33 . .. .. . . . . . . . . . . . . . . . . . . . . . . . . µ ( θ ) , σ 2 ( θ ) ( ) X ∼ AN where µ ( θ ) = E ( X ) , and σ 2 ( θ ) = Var ( X ) . For example, in order to get the asymptotic distribution of 1 i =1 X 2 ∑ n i , define Y i = X 2 i , then 1 1 ∑ X 2 ∑ = Y i = Y i =1 i =1 ( E Y , Var ( Y ) ) ∼ AN E X 2 , Var ( X 2 ) ( ) ∼ AN

  59. . . .. . . .. . . .. . . . . . . . . . . . .. . . .. . .. .. . Recap . 1 Y n X n March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang d . . d . Asymptotic Normality . P d When X n Using Slutsky Theorem Summary . Asymptotic Efficiency . . .. . . . .. . . .. . .. .. . . .. . . .. . . . 22 / 33 . .. . . . .. . . .. . . . . .. . . .. . .. . . . . . . . . . . . . . . . . . . . . . → X , Y n → a , then → aX 2 X n + Y n → X + a .

  60. . .. .. . . .. . . . . . .. .. . .. . . .. .. Summary March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang n n Using Delta Method (Theorem 5.5.24) . . Asymptotic Efficiency Asymptotic Normality Recap . . . . . . . . . . . .. . . . . . . . . . . .. . . .. . . .. . . .. .. . . .. . . .. . .. . .. 23 / 33 . . .. . . . .. . . . . . . . . . . . . . . . . . . . . . ( ) θ, ν ( θ ) Assume W n ∼ AN . If a function g satisfies g ′ ( θ ) ̸ = 0 , then ( ) g ( θ ) , [ g ′ ( θ )] 2 ν ( θ ) g ( W n ) ∼ AN

  61. . Asymptotic Normality i.i.d. . . Problem . Example Summary . Asymptotic Efficiency Recap Solution . . . . . . . . . . . .. . . .. . . .. . . . 2 By the invariance property of MLE, MLE of March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang n X 3 By central limit theorem, we know that . . is X . . . . is X . 1 It can be easily shown that MLE of . . . . . . . . .. .. . . . .. . . .. . . .. . .. . . . .. . . .. . . .. . . .. 24 / 33 . .. . .. . . .. . . .. . . . . .. . . .. . . .. . . . . . . . . . . . . . . . . . . . . . . ∼ N ( µ, σ 2 ) X 1 , · · · , X n µ ̸ = 0 Find the asymptotic distribution of MLE of µ 2 .

  62. . . Summary . Asymptotic Efficiency Asymptotic Normality Recap . . . . . . . . . . . .. . . .. . . .. . . .. .. Example Problem .. is X . March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang n X 3 By central limit theorem, we know that . . 2 By the invariance property of MLE, MLE of . . . . . . Solution . i.i.d. . . . . . . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . . .. . . .. . . .. . . .. . 24 / 33 .. .. . . .. . . . . . . . . . . . . . . . . . . . . . . . ∼ N ( µ, σ 2 ) X 1 , · · · , X n µ ̸ = 0 Find the asymptotic distribution of MLE of µ 2 . 1 It can be easily shown that MLE of µ is X .

  63. . . . Asymptotic Efficiency Asymptotic Normality Recap . . . . . . . . . . . .. . .. Example . . .. . . .. .. . Summary . . . March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang n X 3 By central limit theorem, we know that . . . Problem . . . Solution . i.i.d. . . .. . . . .. .. . . .. . . .. . .. .. . . .. . . .. . . . . . .. . . .. . . .. . . .. . . . . . .. . . .. 24 / 33 . . . . . . . . . . . . . . . . . . . . . ∼ N ( µ, σ 2 ) X 1 , · · · , X n µ ̸ = 0 Find the asymptotic distribution of MLE of µ 2 . 1 It can be easily shown that MLE of µ is X . 2 . 2 By the invariance property of MLE, MLE of µ 2 is X

  64. . .. Asymptotic Efficiency Asymptotic Normality Recap . . . . . . . . . . . .. . . . Summary . .. . .. .. . . .. . Example . . March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang n 3 By central limit theorem, we know that . . . . . . . Solution . i.i.d. . . Problem . . .. . . .. . . .. . . .. . .. .. . . .. . . .. . . . . . .. . .. . . .. . . .. . . . 24 / 33 . . .. .. . . . . . . . . . . . . . . . . . . . . . . . ∼ N ( µ, σ 2 ) X 1 , · · · , X n µ ̸ = 0 Find the asymptotic distribution of MLE of µ 2 . 1 It can be easily shown that MLE of µ is X . 2 . 2 By the invariance property of MLE, MLE of µ 2 is X µ, σ 2 ( ) X ∼ AN

  65. . . .. . . .. . . .. . . . . . . . . . . . .. . . .. . . .. . Recap . X March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang n n g g y Asymptotic Normality g y . . . Solution (cont’d) Summary . Asymptotic Efficiency .. . .. . . . .. . . .. . .. . . . .. . . .. . . .. 25 / 33 . . . .. . . .. . . .. . . .. . . .. . . .. . . . . . . . . . . . . . . . . . . . . . 4 Define g ( y ) = y 2 , and apply Delta Method.

  66. . . . . .. . . .. . .. . . . .. . . .. .. .. . . . . . . . . . . .. X March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang n n g g . Recap . . Solution (cont’d) Summary . Asymptotic Efficiency Asymptotic Normality . . . .. . .. . . .. . . . . . .. . . .. . . . 25 / 33 .. .. .. . .. . . . . . . . .. . . .. .. . . . . . . . . . . . . . . . . . . . . . . . 4 Define g ( y ) = y 2 , and apply Delta Method. g ′ ( y ) = 2 y

  67. . .. .. . . .. . . . . . .. . .. .. . . . .. . . March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang n n X . . . Solution (cont’d) Summary . Asymptotic Efficiency Asymptotic Normality Recap . . . . . . . . . . .. . . .. .. . .. . .. . . . . . .. . . .. . . . 25 / 33 .. .. .. .. . . . . . . . . .. . . .. . . . . . . . . . . . . . . . . . . . . . . . 4 Define g ( y ) = y 2 , and apply Delta Method. g ′ ( y ) = 2 y g ( µ ) , [ g ′ ( µ )] 2 σ 2 ( ) 2 ∼ AN

  68. . .. .. . . .. . . . . .. .. . . .. . . . .. . . March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang n n X . . . Solution (cont’d) Summary . Asymptotic Efficiency Asymptotic Normality Recap . . . . . . . . . . .. . . .. .. . . .. . . . . . .. . . .. . . . .. .. .. . . .. . . . . . .. . . . .. . . 25 / 33 .. . . . . . . . . . . . . . . . . . . . . . 4 Define g ( y ) = y 2 , and apply Delta Method. g ′ ( y ) = 2 y g ( µ ) , [ g ′ ( µ )] 2 σ 2 ( ) 2 ∼ AN µ 2 , (2 µ ) 2 σ 2 ( ) ∼ AN

  69. If two estimators W n and V n satisfy The asymptotic relative efficiency (ARE) of V n with respect to W n is ARE V n W n If ARE V n W n , then V n is asymptotically more . Asymptotic Normality . their asymptotic variance. If both estimators are consistent and asymptotic normal, we can compare Asymptotic Relative Efficiency (ARE) Summary . Asymptotic Efficiency . Recap . . . . . . . . . . . .. . . .. . . .. Definition 10.1.16 : Asymptotic Relative Efficiency . . d March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang efficient than W n . for every V W V n V n . W d n W n . . . . .. . . .. .. . .. . . .. . . .. . . . .. . .. . . .. . . .. . . . . . .. . .. . . .. . . .. . . 26 / 33 . . . .. . . .. . . .. . . . . . . . . . . . . . . . . . . . . .

  70. The asymptotic relative efficiency (ARE) of V n with respect to W n is ARE V n W n If ARE V n W n , then V n is asymptotically more Recap . . . . . . . . . . . .. . . .. . . . Asymptotic Efficiency .. . . .. .. . .. Asymptotic Normality Asymptotic Relative Efficiency (ARE) . d March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang efficient than W n . for every V W d Summary . . Definition 10.1.16 : Asymptotic Relative Efficiency . their asymptotic variance. If both estimators are consistent and asymptotic normal, we can compare . . . .. . . . . . .. . . .. . .. .. . . .. . . .. . . . .. . . . .. . . .. . . .. . . .. . .. . . . .. 26 / 33 . . . . . . . . . . . . . . . . . . . . . √ n [ W n − τ ( θ )] If two estimators W n and V n satisfy → N (0 , σ 2 W ) √ n [ V n − τ ( θ )] → N (0 , σ 2 V )

  71. If ARE V n W n , then V n is asymptotically more . . . . . . . . . . . . . .. . . .. . . .. Asymptotic Normality . .. .. . .. . Recap . Asymptotic Efficiency d March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang efficient than W n . for every V W d .. . . Definition 10.1.16 : Asymptotic Relative Efficiency . their asymptotic variance. If both estimators are consistent and asymptotic normal, we can compare Asymptotic Relative Efficiency (ARE) Summary . . . . .. . . .. . . .. . .. . . . .. . . .. . . . . .. . .. . . .. . . .. . . .. 26 / 33 . . . .. . . .. . . . . . . . . . . . . . . . . . . . . . √ n [ W n − τ ( θ )] If two estimators W n and V n satisfy → N (0 , σ 2 W ) √ n [ V n − τ ( θ )] → N (0 , σ 2 V ) The asymptotic relative efficiency (ARE) of V n with respect to W n is ARE ( V n , W n ) = σ 2 σ 2

  72. . .. . .. . . .. . . . Recap . .. . .. .. . . . . . . . . . . . . Asymptotic Normality . d March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang efficient than W n . V W d . Asymptotic Efficiency . Definition 10.1.16 : Asymptotic Relative Efficiency . their asymptotic variance. If both estimators are consistent and asymptotic normal, we can compare Asymptotic Relative Efficiency (ARE) Summary . .. . . . . . .. . . .. . .. . . . .. . . .. . . .. .. 26 / 33 . . . . . .. . .. . .. .. . . .. . . .. . . . . . . . . . . . . . . . . . . . . . . . √ n [ W n − τ ( θ )] If two estimators W n and V n satisfy → N (0 , σ 2 W ) √ n [ V n − τ ( θ )] → N (0 , σ 2 V ) The asymptotic relative efficiency (ARE) of V n with respect to W n is ARE ( V n , W n ) = σ 2 σ 2 If ARE ( V n , W n ) ≥ 1 for every θ ∈ Ω , then V n is asymptotically more

  73. . .. Asymptotic Efficiency Asymptotic Normality Recap . . . . . . . . . . . .. . . . Summary . .. . . .. . . .. . Example . i March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang Determine which one is more asymptotically efficient estimator. X e V n I X i n . n W n Our estimators are i.i.d. Let X i . . Problem .. . .. . . .. . . .. . . .. . . .. . . .. . . .. . . . .. . . . .. . . .. . . .. . .. . . . .. . . .. 27 / 33 . . . . . . . . . . . . . . . . . . . . . ∼ Poisson ( λ ) . consider estimating Pr ( X = 0) = e − λ

  74. . . Recap . . . . . . . . . . . .. . . .. . Asymptotic Efficiency .. . . .. . .. .. . Asymptotic Normality . .. n March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang Determine which one is more asymptotically efficient estimator. X e V n n W n Summary Our estimators are i.i.d. Let X i . . Problem . Example . . . . . . . .. . . .. . .. . . . .. . . .. . . . .. .. .. .. . . .. . . .. . . 27 / 33 . . . .. . . .. . . . . . . . . . . . . . . . . . . . . . . ∼ Poisson ( λ ) . consider estimating Pr ( X = 0) = e − λ 1 ∑ = I ( X i = 0) i =1

  75. . . . . . . . . . . . . . .. . . .. . .. Asymptotic Normality . . .. . .. .. . . Recap Asymptotic Efficiency . W n March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang Determine which one is more asymptotically efficient estimator. V n n n Our estimators are . i.i.d. Let X i . . Problem . Example Summary .. . . . . .. .. . . .. . .. . . . .. . . .. . . .. . . . . . .. . . .. . .. . . . .. . . .. 27 / 33 . .. . . . . . . . . . . . . . . . . . . . . . ∼ Poisson ( λ ) . consider estimating Pr ( X = 0) = e − λ 1 ∑ = I ( X i = 0) i =1 e − X =

  76. . . . . . . . . . . . . . .. . . .. . .. Asymptotic Normality . . .. . .. .. . . Recap Asymptotic Efficiency . W n March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang Determine which one is more asymptotically efficient estimator. V n n n Our estimators are . i.i.d. Let X i . . Problem . Example Summary .. . . . . .. .. . . .. . .. . . . .. . . .. . . .. . . . . . .. . . .. . .. . . . .. . . .. 27 / 33 . .. . . . . . . . . . . . . . . . . . . . . . ∼ Poisson ( λ ) . consider estimating Pr ( X = 0) = e − λ 1 ∑ = I ( X i = 0) i =1 e − X =

  77. g X and g y . . . Asymptotic Efficiency Asymptotic Normality Recap . . . . . . . . . . . .. . Solution - Asymptotic Distribution of V n .. . . .. . . .. . . Summary X . g March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang n e e n g X E X Var X n e V n y . By Delta Method e y , then V n e Define g y n .. .. . . . .. . . .. . . .. . .. .. . . .. . . .. . . . . .. . . . .. . . .. . . .. . .. . . .. . . .. . 28 / 33 . . . . . . . . . . . . . . . . . . . . . V n ( X ) = e − X , by CLT,

  78. . .. Asymptotic Normality Recap . . . . . . . . . . . .. . . . . . .. . . .. . . .. Asymptotic Efficiency Summary . g March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang n e e n g X Solution - Asymptotic Distribution of V n e V n y . By Delta Method e g X and g y y , then V n e Define g y .. . .. . . .. . . .. . . .. . . .. . . .. . . .. . . . .. . . . .. . . .. . . .. . .. . . .. . . .. . 28 / 33 . . . . . . . . . . . . . . . . . . . . . V n ( X ) = e − X , by CLT, X ∼ AN ( E X , Var X / n ) ∼ AN ( λ, λ / n )

  79. . . .. . . .. . . .. . . . . . . . . . . . .. . . .. . . .. . Recap . g March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang n e e n g Asymptotic Normality X e V n Solution - Asymptotic Distribution of V n Summary . Asymptotic Efficiency .. . .. . . . .. . . .. . .. .. . . .. . . .. . . . 28 / 33 . . . .. . . .. . . .. . .. . . . .. . . .. . . . . . . . . . . . . . . . . . . . . . V n ( X ) = e − X , by CLT, X ∼ AN ( E X , Var X / n ) ∼ AN ( λ, λ / n ) Define g ( y ) = e − y , then V n = g ( X ) and g ′ ( y ) = − e − y . By Delta Method

  80. . . . . .. . . .. . . .. . . .. . . .. .. . . n March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang n e e Solution - Asymptotic Distribution of V n .. Summary . Asymptotic Efficiency Asymptotic Normality Recap . . . . . . . . . . . . .. .. .. . . . .. . . . . . .. . . .. . . .. 28 / 33 . . .. . .. . .. .. . . .. . . . .. . . . . . . . . . . . . . . . . . . . . . . . . V n ( X ) = e − X , by CLT, X ∼ AN ( E X , Var X / n ) ∼ AN ( λ, λ / n ) Define g ( y ) = e − y , then V n = g ( X ) and g ′ ( y ) = − e − y . By Delta Method ( g ( λ ) , [ g ′ ( λ )] 2 λ ) V n = e − X ∼ AN

  81. . .. .. . . .. . . . . .. .. . . .. . . .. .. Summary March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang n n Solution - Asymptotic Distribution of V n . . Asymptotic Efficiency Asymptotic Normality Recap . . . . . . . . . . . .. . . . . . . . .. . . .. . . .. . . .. . . .. . . . .. . . .. . .. . .. 28 / 33 . . . . .. . .. . . . . . . . . . . . . . . . . . . . . . V n ( X ) = e − X , by CLT, X ∼ AN ( E X , Var X / n ) ∼ AN ( λ, λ / n ) Define g ( y ) = e − y , then V n = g ( X ) and g ′ ( y ) = − e − y . By Delta Method ( g ( λ ) , [ g ′ ( λ )] 2 λ ) V n = e − X ∼ AN ( ) e − λ , e − 2 λ λ ∼ AN

  82. . . . . . . . . . . . n n W n Solution - Asymptotic Distribution of W n Summary . Asymptotic Efficiency Asymptotic Normality Recap . I X i .. . . .. . . .. . . i Z n . E Z March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang n e e e n Var Z Z n Z i W n By CLT, e e Var Z e Pr X E Z Bernoulli E Z .. .. . .. .. . . .. . . .. . . . . . .. . . .. . . .. . . . .. .. . . . .. . . .. . . .. . .. . . . .. . . .. . 29 / 33 . . . . . . . . . . . . . . . . . . . . . Define Z i = I ( X i = 0)

  83. . . W n Solution - Asymptotic Distribution of W n Summary . Asymptotic Efficiency Asymptotic Normality Recap . . . . . . . . . . .. n . . .. . . .. . .. .. n Z i . Var Z March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang n e e e n E Z Bernoulli E Z Z n W n By CLT, e e Var Z e Pr X E Z . . .. .. .. . . .. . . .. . . . . . .. . . .. . . .. . . . . 29 / 33 . . .. . . .. . . .. . . .. . .. . . .. . . .. . . . . . . . . . . . . . . . . . . . . . Define Z i = I ( X i = 0) 1 ∑ = I ( X i = 0) = Z n i =1

  84. . .. Solution - Asymptotic Distribution of W n Summary . Asymptotic Efficiency Asymptotic Normality Recap . . . . . . . . . . . . n . .. . . .. . .. .. . W n n .. Var Z March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang n e e e n E Z Z i Z n W n By CLT, e e Var Z e Pr X E Z . . . . . . .. . . .. . . .. . . .. . . .. . . .. . . .. . . . .. . . .. . . .. . . .. . . .. 29 / 33 . .. . . .. . . . . . . . . . . . . . . . . . . . . . Define Z i = I ( X i = 0) 1 ∑ = I ( X i = 0) = Z n i =1 ∼ Bernoulli ( E ( Z ))

  85. . . . Asymptotic Efficiency Asymptotic Normality Recap . . . . . . . . . . . .. . .. Solution - Asymptotic Distribution of W n . . .. . .. .. . . Summary W n . Var Z March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang n e e e n E Z n Z n W n By CLT, e e Var Z Z i n .. . . . .. . .. . . .. . . .. . .. .. . . .. . . .. . . . 29 / 33 . .. . . .. . . .. . . .. . . .. . . . .. . . . . . . . . . . . . . . . . . . . . . . . Define Z i = I ( X i = 0) 1 ∑ = I ( X i = 0) = Z n i =1 ∼ Bernoulli ( E ( Z )) Pr ( X = 0) = e − λ E ( Z ) =

  86. . . Recap . . . . . . . . . . . .. . . .. . Asymptotic Efficiency .. . .. .. . . .. . Asymptotic Normality . .. Var Z March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang n e e e n E Z Summary Z n W n By CLT, Z i n n W n Solution - Asymptotic Distribution of W n . . . . .. . . . .. . . .. . . .. . . .. . . .. . . . 29 / 33 .. . . .. . . .. . . . .. . . . .. . .. . .. . . . . . . . . . . . . . . . . . . . . . Define Z i = I ( X i = 0) 1 ∑ = I ( X i = 0) = Z n i =1 ∼ Bernoulli ( E ( Z )) Pr ( X = 0) = e − λ E ( Z ) = e − λ (1 − e − λ ) Var ( Z ) =

  87. . . .. . . .. . . .. . . . . . . . . . . . .. . . .. . . .. . Recap . By CLT, March 19th, 2013 Biostatistics 602 - Lecture 16 Hyun Min Kang n e e e Z i Asymptotic Normality n n W n Solution - Asymptotic Distribution of W n Summary . Asymptotic Efficiency . .. .. . . .. . . . .. . .. .. . . .. . . .. . . . 29 / 33 . .. . . .. . . . .. . .. . . .. . . .. . . . . . . . . . . . . . . . . . . . . . . . Define Z i = I ( X i = 0) 1 ∑ = I ( X i = 0) = Z n i =1 ∼ Bernoulli ( E ( Z )) Pr ( X = 0) = e − λ E ( Z ) = e − λ (1 − e − λ ) Var ( Z ) = W n = Z n ∼ AN ( E ( Z ) , Var ( Z )/ n )

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend