likelihood ratio test lecture 19 biostatistics 602
play

Likelihood Ratio Test Lecture 19 Biostatistics 602 - Statistical - PowerPoint PPT Presentation

. Summary March 26th, 2013 Biostatistics 602 - Lecture 19 Hyun Min Kang March 26th, 2013 Hyun Min Kang Likelihood Ratio Test Lecture 19 Biostatistics 602 - Statistical Inference . . . . Unbiased Test LRT Recap . . . . . . . . 1


  1. • Probability of type II error = . . March 26th, 2013 Biostatistics 602 - Lecture 19 Hyun Min Kang c , which is typically not possible in practice. for all , for all An ideal test should have power function satisfying c . if . . The power function of a hypothesis test with rejection region R is the Definition - The power function . . . . . . . . . Recap LRT Unbiased Test . Summary Power function 4 / 33 . . . . . . . . . . . . . . . . . . . . . . . . . . . function of θ defined by β ( θ ) = Pr ( X ∈ R | θ ) = Pr ( reject H 0 | θ ) If θ ∈ Ω c 0 (alternative is true), the probability of rejecting H 0 is called the power of test for this particular value of θ . • Probability of type I error = β ( θ ) if θ ∈ Ω 0 .

  2. . . March 26th, 2013 Biostatistics 602 - Lecture 19 Hyun Min Kang c , which is typically not possible in practice. for all , for all An ideal test should have power function satisfying The power function of a hypothesis test with rejection region R is the . . Definition - The power function . Power function Summary . . . . . . . . Recap LRT 4 / 33 . Unbiased Test . . . . . . . . . . . . . . . . . . . . . . . . . . . function of θ defined by β ( θ ) = Pr ( X ∈ R | θ ) = Pr ( reject H 0 | θ ) If θ ∈ Ω c 0 (alternative is true), the probability of rejecting H 0 is called the power of test for this particular value of θ . • Probability of type I error = β ( θ ) if θ ∈ Ω 0 . • Probability of type II error = 1 − β ( θ ) if θ ∈ Ω c 0 .

  3. . Summary March 26th, 2013 Biostatistics 602 - Lecture 19 Hyun Min Kang The power function of a hypothesis test with rejection region R is the . . Definition - The power function . Power function . . . . . . Unbiased Test 4 / 33 . . . . Recap LRT . . . . . . . . . . . . . . . . . . . . . . . . . . . function of θ defined by β ( θ ) = Pr ( X ∈ R | θ ) = Pr ( reject H 0 | θ ) If θ ∈ Ω c 0 (alternative is true), the probability of rejecting H 0 is called the power of test for this particular value of θ . • Probability of type I error = β ( θ ) if θ ∈ Ω 0 . • Probability of type II error = 1 − β ( θ ) if θ ∈ Ω c 0 . An ideal test should have power function satisfying β ( θ ) = 0 for all θ ∈ Ω 0 , β ( θ ) = 1 for all θ ∈ Ω c 0 , which is typically not possible in practice.

  4. . is a level . . . . . . . . A test with power function test if Level sup In other words, the maximum probability of making a type I error is equal or less than . Any size test is also a level test Hyun Min Kang Biostatistics 602 - Lecture 19 March 26th, 2013 test . . . . . . . . . . . Recap LRT Unbiased Test . Summary Sizes and Levels of Tests . . . sup In other words, the maximum probability of making a type I error is 5 / 33 . . . . . . . . . . . . . . . . . . . . . . . . . . . Size α test A test with power function β ( θ ) is a size α test if β ( θ ) = α θ ∈ Ω 0

  5. . is a level . . . . . . . . A test with power function test if Level sup In other words, the maximum probability of making a type I error is equal or less than . Any size test is also a level test Hyun Min Kang Biostatistics 602 - Lecture 19 March 26th, 2013 test . . Summary . . . . . . . . Recap LRT Unbiased Test . Sizes and Levels of Tests . . . sup 5 / 33 . . . . . . . . . . . . . . . . . . . . . . . . . . . Size α test A test with power function β ( θ ) is a size α test if β ( θ ) = α θ ∈ Ω 0 In other words, the maximum probability of making a type I error is α .

  6. . or less than . . . . sup In other words, the maximum probability of making a type I error is equal . . Any size test is also a level test Hyun Min Kang Biostatistics 602 - Lecture 19 March 26th, 2013 sup 5 / 33 . Summary LRT . Unbiased Test . . . . . . . Sizes and Levels of Tests . . Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . Size α test A test with power function β ( θ ) is a size α test if β ( θ ) = α θ ∈ Ω 0 In other words, the maximum probability of making a type I error is α . Level α test A test with power function β ( θ ) is a level α test if β ( θ ) ≤ α θ ∈ Ω 0

  7. . . March 26th, 2013 Biostatistics 602 - Lecture 19 Hyun Min Kang test test is also a level Any size In other words, the maximum probability of making a type I error is equal sup . . . . . sup 5 / 33 Sizes and Levels of Tests . Summary . . . . . . . . Unbiased Test . LRT Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . Size α test A test with power function β ( θ ) is a size α test if β ( θ ) = α θ ∈ Ω 0 In other words, the maximum probability of making a type I error is α . Level α test A test with power function β ( θ ) is a level α test if β ( θ ) ≤ α θ ∈ Ω 0 or less than α .

  8. . . March 26th, 2013 Biostatistics 602 - Lecture 19 Hyun Min Kang In other words, the maximum probability of making a type I error is equal sup . . . sup . . . 5 / 33 Sizes and Levels of Tests LRT . . . . . . . . Recap Unbiased Test . Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . Size α test A test with power function β ( θ ) is a size α test if β ( θ ) = α θ ∈ Ω 0 In other words, the maximum probability of making a type I error is α . Level α test A test with power function β ( θ ) is a level α test if β ( θ ) ≤ α θ ∈ Ω 0 or less than α . Any size α test is also a level α test

  9. . is the MLE of x L x L x where is the MLE of over , and over sup (restricted MLE). The likelihood ratio test is a test that rejects H if and only if x c where c . Hyun Min Kang Biostatistics 602 - Lecture 19 March 26th, 2013 L x . L . . . . . . . . Recap LRT Unbiased Test . Summary Likelihood Ratio Tests (LRT) . Definition . . x sup 6 / 33 . . . . . . . . . . . . . . . . . . . . . . . . . . . Let L ( θ | x ) be the likelihood function of θ . The likelihood ratio test statistic for testing H 0 : θ ∈ Ω 0 vs. H 1 : θ ∈ Ω c 0 is

  10. . The likelihood ratio test is a test that rejects H if and only if is the MLE of over , and is the MLE of over (restricted MLE). x . c where c . Hyun Min Kang Biostatistics 602 - Lecture 19 March 26th, 2013 where 6 / 33 Likelihood Ratio Tests (LRT) . . Summary LRT . Definition Recap . . . . . . . . . Unbiased Test . . . . . . . . . . . . . . . . . . . . . . . . . . . Let L ( θ | x ) be the likelihood function of θ . The likelihood ratio test statistic for testing H 0 : θ ∈ Ω 0 vs. H 1 : θ ∈ Ω c 0 is sup θ ∈ Ω L ( θ | x ) = L (ˆ sup θ ∈ Ω 0 L ( θ | x ) θ 0 | x ) λ ( x ) = L (ˆ θ | x )

  11. . Definition March 26th, 2013 Biostatistics 602 - Lecture 19 Hyun Min Kang . c where c x The likelihood ratio test is a test that rejects H if and only if (restricted MLE). . . . 6 / 33 . Unbiased Test Summary . . . . . . . . . Recap Likelihood Ratio Tests (LRT) LRT . . . . . . . . . . . . . . . . . . . . . . . . . . . Let L ( θ | x ) be the likelihood function of θ . The likelihood ratio test statistic for testing H 0 : θ ∈ Ω 0 vs. H 1 : θ ∈ Ω c 0 is sup θ ∈ Ω L ( θ | x ) = L (ˆ sup θ ∈ Ω 0 L ( θ | x ) θ 0 | x ) λ ( x ) = L (ˆ θ | x ) where ˆ θ is the MLE of θ over θ ∈ Ω , and ˆ θ 0 is the MLE of θ over θ ∈ Ω 0

  12. . Summary March 26th, 2013 Biostatistics 602 - Lecture 19 Hyun Min Kang (restricted MLE). . . . Definition . Likelihood Ratio Tests (LRT) 6 / 33 . Unbiased Test LRT Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Let L ( θ | x ) be the likelihood function of θ . The likelihood ratio test statistic for testing H 0 : θ ∈ Ω 0 vs. H 1 : θ ∈ Ω c 0 is sup θ ∈ Ω L ( θ | x ) = L (ˆ sup θ ∈ Ω 0 L ( θ | x ) θ 0 | x ) λ ( x ) = L (ˆ θ | x ) where ˆ θ is the MLE of θ over θ ∈ Ω , and ˆ θ 0 is the MLE of θ over θ ∈ Ω 0 The likelihood ratio test is a test that rejects H 0 if and only if λ ( x ) ≤ c where 0 ≤ c ≤ 1 .

  13. . x i . . . . . L x n i exp n . exp n i x i We need to find MLE of over and . Hyun Min Kang Biostatistics 602 - Lecture 19 March 26th, 2013 . . . Solution . . . . . . . . Recap LRT Unbiased Test . Summary Example of LRT . Problem . . i.i.d. H H For the LRT test and its power function . 7 / 33 . . . . . . . . . . . . . . . . . . . . . . . . . . . ∼ N ( θ, σ 2 ) where σ 2 is known. Consider X 1 , · · · , X n

  14. . x i . . . . . . L x n i exp n . exp n i x i We need to find MLE of over and . Hyun Min Kang Biostatistics 602 - Lecture 19 March 26th, 2013 . Solution . . . . . . . . . . Recap LRT Unbiased Test . Summary Example of LRT . Problem . . i.i.d. H For the LRT test and its power function 7 / 33 . . . . . . . . . . . . . . . . . . . . . . . . . . . ∼ N ( θ, σ 2 ) where σ 2 is known. Consider X 1 , · · · , X n : θ ≤ θ 0 H 0

  15. . exp . . . . . . . L x n i x i Solution n exp n i x i We need to find MLE of over and . Hyun Min Kang Biostatistics 602 - Lecture 19 March 26th, 2013 . . . For the LRT test and its power function . . . . . . . . Recap LRT Unbiased Test . Summary Example of LRT . Problem . . i.i.d. 7 / 33 . . . . . . . . . . . . . . . . . . . . . . . . . . . ∼ N ( θ, σ 2 ) where σ 2 is known. Consider X 1 , · · · , X n : θ ≤ θ 0 H 0 : θ > θ 0 H 1

  16. . i Solution . . n n exp n x i For the LRT test and its power function We need to find MLE of over and . Hyun Min Kang Biostatistics 602 - Lecture 19 March 26th, 2013 . . i.i.d. Example of LRT . . . . . . . . Recap LRT Unbiased Test . Summary 7 / 33 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ∼ N ( θ, σ 2 ) where σ 2 is known. Consider X 1 , · · · , X n : θ ≤ θ 0 H 0 : θ > θ 0 H 1 − ( x i − θ ) 2 1 [ ] ∏ √ L ( θ | x ) = 2 σ 2 2 πσ 2 exp i =1

  17. . exp . Solution . . . n We need to find MLE of i.i.d. over and . Hyun Min Kang Biostatistics 602 - Lecture 19 March 26th, 2013 For the LRT test and its power function 7 / 33 . LRT Recap . . . . . . . . Unbiased Test . Summary Example of LRT . Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . ∼ N ( θ, σ 2 ) where σ 2 is known. Consider X 1 , · · · , X n : θ ≤ θ 0 H 0 : θ > θ 0 H 1 − ( x i − θ ) 2 1 [ ] ∏ √ L ( θ | x ) = 2 σ 2 2 πσ 2 exp i =1 i =1 ( x i − θ ) 2 ( 1 ) n [ ∑ n ] √ − = 2 σ 2 2 πσ 2

  18. . Problem March 26th, 2013 Biostatistics 602 - Lecture 19 Hyun Min Kang exp n . . Solution . For the LRT test and its power function i.i.d. . . . . Unbiased Test . . . . Example of LRT . . . . Recap LRT 7 / 33 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . ∼ N ( θ, σ 2 ) where σ 2 is known. Consider X 1 , · · · , X n : θ ≤ θ 0 H 0 : θ > θ 0 H 1 − ( x i − θ ) 2 1 [ ] ∏ √ L ( θ | x ) = 2 σ 2 2 πσ 2 exp i =1 i =1 ( x i − θ ) 2 ( 1 ) n [ ∑ n ] √ − = 2 σ 2 2 πσ 2 We need to find MLE of θ over Ω = ( −∞ , ∞ ) and Ω 0 = ( −∞ , θ 0 ] .

  19. . n x i n i x i x i n n i x i i n x i The equation above minimizes when n i x i n x . Hyun Min Kang Biostatistics 602 - Lecture 19 March 26th, 2013 i 8 / 33 . Summary . . . . . . . . Recap LRT Unbiased Test . , or . . . . . . . . . . . . . . . . . . . . . . . . . . . MLE of θ over Ω = ( −∞ , ∞ ) i =1 ( x i − θ ) 2 [ ∑ n ] To maximize L ( θ | x ) , we need to maximize exp − 2 σ 2 i =1 ( x i − θ ) 2 . equivalently to minimize ∑ n

  20. . x i . n n n i x i n i The equation above minimizes when , or n i x i n x . Hyun Min Kang Biostatistics 602 - Lecture 19 March 26th, 2013 n 8 / 33 . . . . . . . . . Summary Recap LRT Unbiased Test . . . . . . . . . . . . . . . . . . . . . . . . . . . MLE of θ over Ω = ( −∞ , ∞ ) i =1 ( x i − θ ) 2 [ ∑ n ] To maximize L ( θ | x ) , we need to maximize exp − 2 σ 2 i =1 ( x i − θ ) 2 . equivalently to minimize ∑ n i + θ 2 − 2 θ x i ) ∑ ( x i − θ ) 2 ∑ ( x 2 = i =1 i =1

  21. . n . n n n i The equation above minimizes when i , or x i n x . Hyun Min Kang Biostatistics 602 - Lecture 19 March 26th, 2013 n 8 / 33 Summary . . . . . . . . Recap LRT Unbiased Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . MLE of θ over Ω = ( −∞ , ∞ ) i =1 ( x i − θ ) 2 [ ∑ n ] To maximize L ( θ | x ) , we need to maximize exp − 2 σ 2 i =1 ( x i − θ ) 2 . equivalently to minimize ∑ n i + θ 2 − 2 θ x i ) ∑ ( x i − θ ) 2 ∑ ( x 2 = i =1 i =1 n θ 2 − 2 θ ∑ ∑ x 2 = x i + i =1 i =1

  22. . , or March 26th, 2013 Biostatistics 602 - Lecture 19 Hyun Min Kang n i n n n . n 8 / 33 Summary Unbiased Test Recap . . . . . LRT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MLE of θ over Ω = ( −∞ , ∞ ) i =1 ( x i − θ ) 2 [ ∑ n ] To maximize L ( θ | x ) , we need to maximize exp − 2 σ 2 i =1 ( x i − θ ) 2 . equivalently to minimize ∑ n i + θ 2 − 2 θ x i ) ∑ ( x i − θ ) 2 ∑ ( x 2 = i =1 i =1 n θ 2 − 2 θ ∑ ∑ x 2 = x i + i =1 i =1 ∑ n The equation above minimizes when θ = ˆ θ = i =1 x i = x .

  23. • However, if x . . March 26th, 2013 Biostatistics 602 - Lecture 19 Hyun Min Kang if X if X X To summarize, . Therefore , the likelihood function will be an increasing function. , and , x does not fall into a valid range of n 9 / 33 LRT . . Summary . Unbiased Test . Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MLE of θ over Ω 0 = ( −∞ , θ 0 ] ∑ n • L ( θ | x ) is maximized at θ = = x if x ≤ θ 0 . i =1 x i

  24. . Summary March 26th, 2013 Biostatistics 602 - Lecture 19 Hyun Min Kang if X if X X To summarize, n . 9 / 33 . . . LRT . . . . . . Unbiased Test Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . MLE of θ over Ω 0 = ( −∞ , θ 0 ] ∑ n • L ( θ | x ) is maximized at θ = = x if x ≤ θ 0 . i =1 x i • However, if x ≥ θ 0 , x does not fall into a valid range of ˆ θ 0 , and θ ≤ θ 0 , the likelihood function will be an increasing function. Therefore ˆ θ 0 = θ 0 .

  25. . Unbiased Test March 26th, 2013 Biostatistics 602 - Lecture 19 Hyun Min Kang To summarize, . Summary . n 9 / 33 LRT Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MLE of θ over Ω 0 = ( −∞ , θ 0 ] ∑ n • L ( θ | x ) is maximized at θ = = x if x ≤ θ 0 . i =1 x i • However, if x ≥ θ 0 , x does not fall into a valid range of ˆ θ 0 , and θ ≤ θ 0 , the likelihood function will be an increasing function. Therefore ˆ θ 0 = θ 0 . { X if X ≤ θ 0 ˆ θ 0 = θ 0 if X > θ 0

  26. if X n x . . March 26th, 2013 Biostatistics 602 - Lecture 19 Hyun Min Kang . and x c exp Therefore, the likelihood test rejects the null hypothesis if and only if if X n x exp exp exp 10 / 33 . Likelihood ratio test Unbiased Test LRT Recap . . . . . Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 if X ≤ θ 0  λ ( x ) = L (ˆ i =1( xi − θ 0)2 θ 0 | x )  [ ] ∑ n  − = 2 σ 2 L (ˆ if X > θ 0 θ | x ) i =1( xi − x )2 [ ]  ∑ n  −  2 σ 2

  27. . exp March 26th, 2013 Biostatistics 602 - Lecture 19 Hyun Min Kang . and x c n x exp Therefore, the likelihood test rejects the null hypothesis if and only if exp exp . 10 / 33 Unbiased Test Likelihood ratio test . . . . Summary LRT . . . . . Recap . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 if X ≤ θ 0  λ ( x ) = L (ˆ i =1( xi − θ 0)2 θ 0 | x )  [ ] ∑ n  − = 2 σ 2 L (ˆ if X > θ 0 θ | x ) i =1( xi − x )2 [ ]  ∑ n  −  2 σ 2 { 1 if X ≤ θ 0 = [ − n ( x − θ 0 ) 2 ] if X > θ 0 2 σ 2

  28. . Summary March 26th, 2013 Biostatistics 602 - Lecture 19 Hyun Min Kang exp Therefore, the likelihood test rejects the null hypothesis if and only if exp exp . exp Likelihood ratio test 10 / 33 . . . . . . . . . Recap Unbiased Test LRT . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 if X ≤ θ 0  λ ( x ) = L (ˆ i =1( xi − θ 0)2 θ 0 | x )  [ ] ∑ n  − = 2 σ 2 L (ˆ if X > θ 0 θ | x ) i =1( xi − x )2 [ ]  ∑ n  −  2 σ 2 { 1 if X ≤ θ 0 = [ − n ( x − θ 0 ) 2 ] if X > θ 0 2 σ 2 − n ( x − θ 0 ) 2 [ ] ≤ c 2 σ 2 and x ≥ θ 0 .

  29. . . March 26th, 2013 Biostatistics 602 - Lecture 19 Hyun Min Kang x n log c x n log c x log c n x c 11 / 33 . . . . Specifying c Summary . Unbiased Test exp LRT Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . − n ( x − θ 0 ) 2 [ ] ≤ 2 σ 2

  30. . . March 26th, 2013 Biostatistics 602 - Lecture 19 Hyun Min Kang x n log c x n log c x log c c 11 / 33 exp Unbiased Test . . . . . . . . Recap LRT . Summary Specifying c . . . . . . . . . . . . . . . . . . . . . . . . . . . − n ( x − θ 0 ) 2 [ ] ≤ 2 σ 2 ⇒ − n ( x − θ 0 ) 2 ⇐ ≤ 2 σ 2

  31. . exp March 26th, 2013 Biostatistics 602 - Lecture 19 Hyun Min Kang x n log c x n log c c . 11 / 33 Specifying c LRT . . Unbiased Test . . . . . . . Summary Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . − n ( x − θ 0 ) 2 [ ] ≤ 2 σ 2 ⇒ − n ( x − θ 0 ) 2 ⇐ ≤ 2 σ 2 − 2 σ 2 log c ⇒ ( x − θ 0 ) 2 ⇐ ≥

  32. . Summary March 26th, 2013 Biostatistics 602 - Lecture 19 Hyun Min Kang n n log c . exp Specifying c c . Recap . . . . . . . . Unbiased Test 11 / 33 LRT . . . . . . . . . . . . . . . . . . . . . . . . . . . − n ( x − θ 0 ) 2 [ ] ≤ 2 σ 2 ⇒ − n ( x − θ 0 ) 2 ⇐ ≤ 2 σ 2 − 2 σ 2 log c ⇒ ( x − θ 0 ) 2 ⇐ ≥ √ − 2 σ 2 log c ⇐ ⇒ x − θ 0 ≥ ( ∵ x > θ 0 )

  33. . Specifying c (cont’d) March 26th, 2013 Biostatistics 602 - Lecture 19 Hyun Min Kang c n x x Therefore, the rejection region is n n . 12 / 33 Summary LRT . . . Unbiased Test . . . . . . Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . So, LRT rejects H 0 if and only if √ − 2 σ 2 log c x − θ 0 ≥ √ − 2 σ 2 log c ⇒ x − θ 0 = c ∗ ⇐ σ / √ n ≥ σ / √ n

  34. . . March 26th, 2013 Biostatistics 602 - Lecture 19 Hyun Min Kang Therefore, the rejection region is n n . Specifying c (cont’d) Summary 12 / 33 Unbiased Test LRT . . Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . So, LRT rejects H 0 if and only if √ − 2 σ 2 log c x − θ 0 ≥ √ − 2 σ 2 log c ⇒ x − θ 0 = c ∗ ⇐ σ / √ n ≥ σ / √ n { x : x − θ 0 } σ / √ n ≥ c ∗

  35. . X n n c Since X X n i.i.d. , X n . Therefore, n Pr = Pr Z n c where Z . Hyun Min Kang Biostatistics 602 - Lecture 19 March 26th, 2013 X c . n . . . . . . . . Recap LRT Unbiased Test . Summary Power function Pr X 13 / 33 . . . . . . . . . . . . . . . . . . . . . . . . . . . ( X − θ 0 ) σ / √ n ≥ c ∗ β ( θ ) = Pr ( reject H 0 ) = Pr

  36. . X n n c Since X X n i.i.d. , X n . Therefore, n Pr = Pr Z n c where Z . Hyun Min Kang Biostatistics 602 - Lecture 19 March 26th, 2013 X 13 / 33 . Power function . . . . . . . . Recap LRT Unbiased Test . Summary Pr . . . . . . . . . . . . . . . . . . . . . . . . . . . ( X − θ 0 ) σ / √ n ≥ c ∗ β ( θ ) = Pr ( reject H 0 ) = Pr ( X − θ + θ − θ 0 ) ≥ c ∗ σ / √ n =

  37. . = Since X X n i.i.d. , X n . Therefore, X n Pr . Z n c where Z . Hyun Min Kang Biostatistics 602 - Lecture 19 March 26th, 2013 Pr 13 / 33 Pr . . . . . Unbiased Test LRT Summary Recap . . . . Power function . . . . . . . . . . . . . . . . . . . . . . . . . . . ( X − θ 0 ) σ / √ n ≥ c ∗ β ( θ ) = Pr ( reject H 0 ) = Pr ( X − θ + θ − θ 0 ) ≥ c ∗ σ / √ n = ( X − θ σ / √ n ≥ θ 0 − θ ) σ / √ n + c ∗ =

  38. . Pr Pr i.i.d. n . Therefore, X n = Z Pr n c where Z . Hyun Min Kang Biostatistics 602 - Lecture 19 March 26th, 2013 . 13 / 33 Recap . . . . LRT Unbiased Test . Summary Power function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( X − θ 0 ) σ / √ n ≥ c ∗ β ( θ ) = Pr ( reject H 0 ) = Pr ( X − θ + θ − θ 0 ) ≥ c ∗ σ / √ n = ( X − θ σ / √ n ≥ θ 0 − θ ) σ / √ n + c ∗ = ( ) θ, σ 2 ∼ N ( θ, σ 2 ) , X ∼ N Since X 1 , · · · , X n

  39. . Power function March 26th, 2013 Biostatistics 602 - Lecture 19 Hyun Min Kang Pr = . Therefore, n i.i.d. . Pr Pr 13 / 33 Summary Recap LRT . . . . . . . . . Unbiased Test . . . . . . . . . . . . . . . . . . . . . . . . . . . ( X − θ 0 ) σ / √ n ≥ c ∗ β ( θ ) = Pr ( reject H 0 ) = Pr ( X − θ + θ − θ 0 ) ≥ c ∗ σ / √ n = ( X − θ σ / √ n ≥ θ 0 − θ ) σ / √ n + c ∗ = ( ) θ, σ 2 ∼ N ( θ, σ 2 ) , X ∼ N Since X 1 , · · · , X n X − θ σ / √ n ∼ N (0 , 1) ( Z ≥ θ 0 − θ ) σ / √ n + c ∗ ⇒ β ( θ ) = where Z ∼ N (0 , 1) .

  40. LRT test rejects H if and only if x . is maximized when c c z Note that Pr Z n c ). is maximum (i.e. c Therefore, size n z . Hyun Min Kang Biostatistics 602 - Lecture 19 March 26th, 2013 Pr Z n . LRT . . . . . . . . Recap 14 / 33 Z Unbiased Test . Summary sup sup Pr . . . . . . . . . . . . . . . . . . . . . . . . . . . Making size α LRT To make a size α test,

  41. LRT test rejects H if and only if x . c c Pr Z c c z Note that Pr Z n is maximum (i.e. is maximized when Z ). Therefore, size n z . Hyun Min Kang Biostatistics 602 - Lecture 19 March 26th, 2013 n sup Pr . LRT . . . . . . . . Recap Unbiased Test . Summary sup 14 / 33 . . . . . . . . . . . . . . . . . . . . . . . . . . . Making size α LRT To make a size α test, β ( θ ) = α θ ∈ Ω 0

  42. LRT test rejects H if and only if x . is maximized when Pr Z c c z Note that Pr Z n c is maximum (i.e. Pr ). Therefore, size n z . Hyun Min Kang Biostatistics 602 - Lecture 19 March 26th, 2013 . 14 / 33 sup Summary . . . . . . . . Recap LRT sup Unbiased Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . Making size α LRT To make a size α test, β ( θ ) = α θ ∈ Ω 0 ( Z ≥ θ 0 − θ ) σ / √ n + c ∗ = α θ ≤ θ 0

  43. LRT test rejects H if and only if x . is maximized when . c z Note that Pr Z n c ). is maximum (i.e. sup Therefore, size n z . Hyun Min Kang Biostatistics 602 - Lecture 19 March 26th, 2013 Pr 14 / 33 Summary . . . . sup Unbiased Test LRT . Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Making size α LRT To make a size α test, β ( θ ) = α θ ∈ Ω 0 ( Z ≥ θ 0 − θ ) σ / √ n + c ∗ = α θ ≤ θ 0 Pr ( Z ≥ c ∗ ) = α

  44. LRT test rejects H if and only if x . sup March 26th, 2013 Biostatistics 602 - Lecture 19 Hyun Min Kang z . n Therefore, size Note that Pr . Pr sup 14 / 33 Unbiased Test . Summary Recap . . . . . . . LRT . . . . . . . . . . . . . . . . . . . . . . . . . . . . Making size α LRT To make a size α test, β ( θ ) = α θ ∈ Ω 0 ( Z ≥ θ 0 − θ ) σ / √ n + c ∗ = α θ ≤ θ 0 Pr ( Z ≥ c ∗ ) = α c ∗ = z α ( σ / √ n + c ∗ ) Z ≥ θ 0 − θ is maximized when θ is maximum (i.e. θ = θ 0 ).

  45. . . March 26th, 2013 Biostatistics 602 - Lecture 19 Hyun Min Kang Note that Pr . Pr sup sup Summary 14 / 33 Unbiased Test LRT . Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Making size α LRT To make a size α test, β ( θ ) = α θ ∈ Ω 0 ( Z ≥ θ 0 − θ ) σ / √ n + c ∗ = α θ ≤ θ 0 Pr ( Z ≥ c ∗ ) = α c ∗ = z α ( σ / √ n + c ∗ ) Z ≥ θ 0 − θ is maximized when θ is maximum (i.e. θ = θ 0 ). Therefore, size α LRT test rejects H 0 if and only if x − θ 0 σ / √ n ≥ z α .

  46. n I . . . . L x n i e x i I x i e x i x . The likelihood function is a increasing function of , bounded by x . Therefore, when , L x is maximized when x . Hyun Min Kang Biostatistics 602 - Lecture 19 March 26th, 2013 . . . . . . . . . . . . Recap LRT Unbiased Test . Summary Another Example of LRT . Problem . . i.i.d. LRT testing the following one-sided hypothesis. H H . Solution . 15 / 33 . . . . . . . . . . . . . . . . . . . . . . . . . . . ∼ f ( x | θ ) = e − ( x − θ ) where x ≥ θ and −∞ < θ < ∞ . Find a X 1 , · · · , X n

  47. n I x i . . . . . L x n i e x i I x i e . . x The likelihood function is a increasing function of , bounded by x . Therefore, when , L x is maximized when x . Hyun Min Kang Biostatistics 602 - Lecture 19 March 26th, 2013 . . . Solution . . . . . . . . Recap LRT Unbiased Test . Summary Another Example of LRT . Problem . . i.i.d. LRT testing the following one-sided hypothesis. . 15 / 33 . . . . . . . . . . . . . . . . . . . . . . . . . . . ∼ f ( x | θ ) = e − ( x − θ ) where x ≥ θ and −∞ < θ < ∞ . Find a X 1 , · · · , X n : θ ≤ θ 0 H 0 : θ > θ 0 H 1

  48. . x . Solution . . n The likelihood function is a increasing function of , bounded by . LRT testing the following one-sided hypothesis. Therefore, when , L x is maximized when x . Hyun Min Kang Biostatistics 602 - Lecture 19 March 26th, 2013 . 15 / 33 Unbiased Test . . Summary LRT Recap i.i.d. . . . . Another Example of LRT . . Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ∼ f ( x | θ ) = e − ( x − θ ) where x ≥ θ and −∞ < θ < ∞ . Find a X 1 , · · · , X n : θ ≤ θ 0 H 0 : θ > θ 0 H 1 ∏ e − ( x i − θ ) I ( x i ≥ θ ) L ( θ | x ) = i =1 e − ∑ x i + n θ I ( θ ≤ x (1) ) =

  49. . Therefore, when . . Solution . . n , L i.i.d. x is maximized when x . Hyun Min Kang Biostatistics 602 - Lecture 19 March 26th, 2013 LRT testing the following one-sided hypothesis. 15 / 33 . LRT Recap . . . . Unbiased Test . Summary Another Example of LRT . . . . . Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . ∼ f ( x | θ ) = e − ( x − θ ) where x ≥ θ and −∞ < θ < ∞ . Find a X 1 , · · · , X n : θ ≤ θ 0 H 0 : θ > θ 0 H 1 ∏ e − ( x i − θ ) I ( x i ≥ θ ) L ( θ | x ) = i =1 e − ∑ x i + n θ I ( θ ≤ x (1) ) = The likelihood function is a increasing function of θ , bounded by θ ≤ x (1) .

  50. . Problem March 26th, 2013 Biostatistics 602 - Lecture 19 Hyun Min Kang n . . Solution . . LRT testing the following one-sided hypothesis. i.i.d. . . 15 / 33 . LRT . . . . Another Example of LRT Recap . . . . . Summary Unbiased Test . . . . . . . . . . . . . . . . . . . . . . . . . . . ∼ f ( x | θ ) = e − ( x − θ ) where x ≥ θ and −∞ < θ < ∞ . Find a X 1 , · · · , X n : θ ≤ θ 0 H 0 : θ > θ 0 H 1 ∏ e − ( x i − θ ) I ( x i ≥ θ ) L ( θ | x ) = i =1 e − ∑ x i + n θ I ( θ ≤ x (1) ) = The likelihood function is a increasing function of θ , bounded by θ ≤ x (1) . Therefore, when θ ∈ Ω = R , L ( θ | x ) is maximized when θ = ˆ θ = x (1) .

  51. . x n e xi nx if x if e n e x if x if x Hyun Min Kang Biostatistics 602 - Lecture 19 March 26th, 2013 xi x . The likelihood ratio test statistic is . . . . . . . . Recap LRT Unbiased Test . Summary Solution (cont’d) 16 / 33 . . . . . . . . . . . . . . . . . . . . . . . . . . . When θ ∈ Ω c 0 , the likelihood is still an increasing function, but bounded by θ ≤ min ( x (1) , θ 0 ) . Therefore, the likelihood is maximized when θ = ˆ θ 0 = min ( x (1) , θ 0 ) .

  52. . Solution (cont’d) March 26th, 2013 Biostatistics 602 - Lecture 19 Hyun Min Kang x if x if x e n . 16 / 33 Summary LRT Unbiased Test . . . . . . . . . Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . When θ ∈ Ω c 0 , the likelihood is still an increasing function, but bounded by θ ≤ min ( x (1) , θ 0 ) . Therefore, the likelihood is maximized when θ = ˆ θ 0 = min ( x (1) , θ 0 ) . The likelihood ratio test statistic is { e − ∑ xi + n θ 0 if θ 0 < x (1) e − ∑ xi + nx (1) λ ( x ) = 1 if θ 0 ≥ x (1)

  53. . Unbiased Test March 26th, 2013 Biostatistics 602 - Lecture 19 Hyun Min Kang . Solution (cont’d) Summary . 16 / 33 LRT Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . When θ ∈ Ω c 0 , the likelihood is still an increasing function, but bounded by θ ≤ min ( x (1) , θ 0 ) . Therefore, the likelihood is maximized when θ = ˆ θ 0 = min ( x (1) , θ 0 ) . The likelihood ratio test statistic is { e − ∑ xi + n θ 0 if θ 0 < x (1) e − ∑ xi + nx (1) λ ( x ) = 1 if θ 0 ≥ x (1) e n ( θ 0 − x (1) ) { if θ 0 < x (1) = if θ 0 ≥ x (1) 1

  54. . X log c n So, LRT reject H is x log c n and x . The power function is Pr log c n n X To find size test, we need to find c satisfying the condition sup Hyun Min Kang Biostatistics 602 - Lecture 19 March 26th, 2013 x log c . x . . . . . . . . Recap LRT Unbiased Test . Summary Solution (cont’d) e n x c and x 17 / 33 . . . . . . . . . . . . . . . . . . . . . . . . . . . The LRT rejects H 0 if and only if

  55. . X n So, LRT reject H is x log c n and x . The power function is Pr log c . n X To find size test, we need to find c satisfying the condition sup Hyun Min Kang Biostatistics 602 - Lecture 19 March 26th, 2013 n log c 17 / 33 Solution (cont’d) . . . . . . . . Recap LRT Unbiased Test . Summary c . . . . . . . . . . . . . . . . . . . . . . . . . . . The LRT rejects H 0 if and only if e n ( θ 0 − x (1) ) ≤ ( and θ 0 < x (1) ) ⇐ ⇒ θ 0 − x (1) ≤ ⇐ ⇒ x (1) ≥ θ 0 − log c

  56. . n n n n Pr X log c X . To find size test, we need to find c satisfying the condition sup Hyun Min Kang Biostatistics 602 - Lecture 19 March 26th, 2013 log c 17 / 33 c . . . . . . . . . Recap LRT Unbiased Test Summary Solution (cont’d) . . . . . . . . . . . . . . . . . . . . . . . . . . . The LRT rejects H 0 if and only if e n ( θ 0 − x (1) ) ≤ ( and θ 0 < x (1) ) ⇐ ⇒ θ 0 − x (1) ≤ ⇐ ⇒ x (1) ≥ θ 0 − log c So, LRT reject H 0 is x (1) ≥ θ 0 − log c and x (1) > θ 0 . The power function is

  57. . c March 26th, 2013 Biostatistics 602 - Lecture 19 Hyun Min Kang sup test, we need to find c satisfying the condition To find size n Pr n n . log c n 17 / 33 Unbiased Test . Solution (cont’d) . . . . . . . Summary . Recap LRT . . . . . . . . . . . . . . . . . . . . . . . . . . . The LRT rejects H 0 if and only if e n ( θ 0 − x (1) ) ≤ ( and θ 0 < x (1) ) ⇐ ⇒ θ 0 − x (1) ≤ ⇐ ⇒ x (1) ≥ θ 0 − log c So, LRT reject H 0 is x (1) ≥ θ 0 − log c and x (1) > θ 0 . The power function is ( ) β ( θ ) = X (1) ≤ θ 0 − log c ∧ X (1) > θ 0

  58. . Solution (cont’d) March 26th, 2013 Biostatistics 602 - Lecture 19 Hyun Min Kang sup n Pr n n . log c c n Summary LRT . . . . . . . . Recap 17 / 33 Unbiased Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . The LRT rejects H 0 if and only if e n ( θ 0 − x (1) ) ≤ ( and θ 0 < x (1) ) ⇐ ⇒ θ 0 − x (1) ≤ ⇐ ⇒ x (1) ≥ θ 0 − log c So, LRT reject H 0 is x (1) ≥ θ 0 − log c and x (1) > θ 0 . The power function is ( ) β ( θ ) = X (1) ≤ θ 0 − log c ∧ X (1) > θ 0 To find size α test, we need to find c satisfying the condition β ( θ ) = α θ ≤ θ 0

  59. . . March 26th, 2013 Biostatistics 602 - Lecture 19 Hyun Min Kang for every x in the sample space. x T x . . Theorem 8.2.4 . LRT based on sufficient statistics Summary . Unbiased Test LRT Recap . . . . . . . . 18 / 33 . . . . . . . . . . . . . . . . . . . . . . . . . . . If T ( X ) is a sufficient statistic for θ , λ ∗ ( t ) is the LRT statistic based on T , and λ ( x ) is the LRT statistic based on x then

  60. . . March 26th, 2013 Biostatistics 602 - Lecture 19 Hyun Min Kang for every x in the sample space. . . Theorem 8.2.4 . LRT based on sufficient statistics Summary . Unbiased Test LRT Recap . . . . . . . . 18 / 33 . . . . . . . . . . . . . . . . . . . . . . . . . . . If T ( X ) is a sufficient statistic for θ , λ ∗ ( t ) is the LRT statistic based on T , and λ ( x ) is the LRT statistic based on x then λ ∗ [ T ( x )] = λ ( x )

  61. . . March 26th, 2013 Biostatistics 602 - Lecture 19 Hyun Min Kang for every x in the sample space. . . Theorem 8.2.4 . LRT based on sufficient statistics Summary . Unbiased Test LRT Recap . . . . . . . . 18 / 33 . . . . . . . . . . . . . . . . . . . . . . . . . . . If T ( X ) is a sufficient statistic for θ , λ ∗ ( t ) is the LRT statistic based on T , and λ ( x ) is the LRT statistic based on x then λ ∗ [ T ( x )] = λ ( x )

  62. . T x sup L T x t sup L t Then, the LRT statistic based on T X is defined as sup g t sup g t Hyun Min Kang Biostatistics 602 - Lecture 19 March 26th, 2013 t to be the pdf or pmf of T x . . and we can choose g t . . . . . . . . Recap LRT Unbiased Test . Summary Proof By Factorization Theorem, the joint pdf of x can be written as 19 / 33 . . . . . . . . . . . . . . . . . . . . . . . . . . . f ( x | θ ) = g ( T ( x ) | θ ) h ( x )

  63. . t L T x t sup L T x sup t g t sup g t Hyun Min Kang Biostatistics 602 - Lecture 19 March 26th, 2013 sup Then, the LRT statistic based on T X is defined as . Recap . . . . . . . . LRT Unbiased Test . Summary Proof By Factorization Theorem, the joint pdf of x can be written as 19 / 33 . . . . . . . . . . . . . . . . . . . . . . . . . . . f ( x | θ ) = g ( T ( x ) | θ ) h ( x ) and we can choose g ( t | θ ) to be the pdf or pmf of T ( x ) .

  64. . Unbiased Test March 26th, 2013 Biostatistics 602 - Lecture 19 Hyun Min Kang By Factorization Theorem, the joint pdf of x can be written as . Summary . Proof 19 / 33 LRT Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . f ( x | θ ) = g ( T ( x ) | θ ) h ( x ) and we can choose g ( t | θ ) to be the pdf or pmf of T ( x ) . Then, the LRT statistic based on T ( X ) is defined as sup θ ∈ Ω 0 L ( θ | T ( x ) = t ) sup θ ∈ Ω L ( θ | T ( x ) = t ) = sup θ ∈ Ω 0 g ( t | θ ) λ ∗ ( t ) = sup θ ∈ Ω g ( t | θ )

  65. . g T x f x sup g T x h x sup g T x h x sup sup f x g T x T x The simplified expression of x should depend on x only through T x , where T x is a sufficient statistic for . Hyun Min Kang Biostatistics 602 - Lecture 19 March 26th, 2013 sup sup . x . . . . . . . . Recap LRT Unbiased Test . Summary Proof (cont’d) LRT statistic based on X is x sup L x sup L 20 / 33 . . . . . . . . . . . . . . . . . . . . . . . . . . .

  66. . g T x h x sup g T x h x sup g T x sup T x sup The simplified expression of x should depend on x only through T x , where T x is a sufficient statistic for . Hyun Min Kang Biostatistics 602 - Lecture 19 March 26th, 2013 g T x 20 / 33 . . . . . . . . LRT statistic based on X is Proof (cont’d) Summary . Unbiased Test . LRT Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . sup θ ∈ Ω 0 L ( θ | x ) sup θ ∈ Ω L ( θ | x ) = sup θ ∈ Ω 0 f ( x | θ ) λ ( x ) = sup θ ∈ Ω f ( x | θ )

  67. . . March 26th, 2013 Biostatistics 602 - Lecture 19 Hyun Min Kang . where T x is a sufficient statistic for x should depend on x only through T x , The simplified expression of T x g T x sup g T x sup 20 / 33 LRT statistic based on X is . . . . . . . . . Recap LRT Unbiased Test Summary Proof (cont’d) . . . . . . . . . . . . . . . . . . . . . . . . . . . sup θ ∈ Ω 0 L ( θ | x ) sup θ ∈ Ω L ( θ | x ) = sup θ ∈ Ω 0 f ( x | θ ) λ ( x ) = sup θ ∈ Ω f ( x | θ ) sup θ ∈ Ω 0 g ( T ( x ) | θ ) h ( x ) = sup θ ∈ Ω g ( T ( x ) | θ ) h ( x )

  68. . Summary March 26th, 2013 Biostatistics 602 - Lecture 19 Hyun Min Kang . where T x is a sufficient statistic for x should depend on x only through T x , The simplified expression of . LRT statistic based on X is Proof (cont’d) 20 / 33 . LRT . . . . Unbiased Test . . . . Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . sup θ ∈ Ω 0 L ( θ | x ) sup θ ∈ Ω L ( θ | x ) = sup θ ∈ Ω 0 f ( x | θ ) λ ( x ) = sup θ ∈ Ω f ( x | θ ) sup θ ∈ Ω 0 g ( T ( x ) | θ ) h ( x ) = sup θ ∈ Ω g ( T ( x ) | θ ) h ( x ) sup θ ∈ Ω 0 g ( T ( x ) | θ ) sup θ ∈ Ω g ( T ( x ) | θ ) = λ ∗ ( T ( x )) =

  69. . Unbiased Test March 26th, 2013 Biostatistics 602 - Lecture 19 Hyun Min Kang . LRT statistic based on X is Proof (cont’d) Summary . 20 / 33 LRT Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . sup θ ∈ Ω 0 L ( θ | x ) sup θ ∈ Ω L ( θ | x ) = sup θ ∈ Ω 0 f ( x | θ ) λ ( x ) = sup θ ∈ Ω f ( x | θ ) sup θ ∈ Ω 0 g ( T ( x ) | θ ) h ( x ) = sup θ ∈ Ω g ( T ( x ) | θ ) h ( x ) sup θ ∈ Ω 0 g ( T ( x ) | θ ) sup θ ∈ Ω g ( T ( x ) | θ ) = λ ∗ ( T ( x )) = The simplified expression of λ ( x ) should depend on x only through T ( x ) , where T ( x ) is a sufficient statistic for θ .

  70. n exp n exp . L . . . . T X X is a sufficient statistic for . T n t sup sup t . L t t n sup t n Hyun Min Kang Biostatistics 602 - Lecture 19 March 26th, 2013 . . . . . . . . . . . . Recap LRT Unbiased Test . Summary Example . Problem . . i.i.d. H H Find a size LRT. . Solution - Using sufficient statistics 21 / 33 . . . . . . . . . . . . . . . . . . . . . . . . . . . ∼ N ( θ, σ 2 ) where σ 2 is known. Consider X 1 , · · · , X n

  71. n exp n exp . sup . . . . . T X X is a sufficient statistic for . T n t t L . sup L t t n sup t n Hyun Min Kang Biostatistics 602 - Lecture 19 March 26th, 2013 . . . Solution - Using sufficient statistics . . . . . . . . Recap LRT Unbiased Test . Summary Example . Problem . . i.i.d. . 21 / 33 . . . . . . . . . . . . . . . . . . . . . . . . . . . ∼ N ( θ, σ 2 ) where σ 2 is known. Consider X 1 , · · · , X n : θ = θ 0 H 0 : θ ̸ = θ 0 H 1 Find a size α LRT.

  72. n exp n exp . sup Solution - Using sufficient statistics . . T n t sup L t t L . t n sup t n Hyun Min Kang Biostatistics 602 - Lecture 19 March 26th, 2013 . 21 / 33 Example . Recap LRT Unbiased Test . Summary . . Problem . . i.i.d. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ∼ N ( θ, σ 2 ) where σ 2 is known. Consider X 1 , · · · , X n : θ = θ 0 H 0 : θ ̸ = θ 0 H 1 Find a size α LRT. T ( X ) = X is a sufficient statistic for θ .

  73. n exp n exp . sup . . T n t sup L t t L . t n sup t n Hyun Min Kang Biostatistics 602 - Lecture 19 March 26th, 2013 Solution - Using sufficient statistics . 21 / 33 . . . . . . . . . Recap LRT Unbiased Test . Summary Example . Problem . i.i.d. . . . . . . . . . . . . . . . . . . . . . . . . . . . ∼ N ( θ, σ 2 ) where σ 2 is known. Consider X 1 , · · · , X n : θ = θ 0 H 0 : θ ̸ = θ 0 H 1 Find a size α LRT. T ( X ) = X is a sufficient statistic for θ . θ, σ 2 ( ) ∼ N

  74. . Problem March 26th, 2013 Biostatistics 602 - Lecture 19 Hyun Min Kang n T . . Solution - Using sufficient statistics . i.i.d. . . . . LRT . . . . Example . . . . Recap 21 / 33 Summary . Unbiased Test . . . . . . . . . . . . . . . . . . . . . . . . . . . ∼ N ( θ, σ 2 ) where σ 2 is known. Consider X 1 , · · · , X n : θ = θ 0 H 0 : θ ̸ = θ 0 H 1 Find a size α LRT. T ( X ) = X is a sufficient statistic for θ . θ, σ 2 ( ) ∼ N [ − ( t − θ 0 ) 2 ] 1 sup θ ∈ Ω 0 L ( θ | t ) 2 πσ 2 / n exp 2 σ 2 / n λ ( t ) = sup θ ∈ Ω L ( θ | t ) = [ − ( t − θ ) 2 ] 1 sup θ ∈ Ω 2 πσ 2 / n exp 2 σ 2 / n

  75. . = n t LRT rejects H if and only if t exp n t c t t n log c c Hyun Min Kang Biostatistics 602 - Lecture 19 March 26th, 2013 exp the LRT statistic is . Recap . . . . . . . . LRT Unbiased Test . Summary Solution (cont’d) 22 / 33 . . . . . . . . . . . . . . . . . . . . . . . . . . . The numerator is fixed, and MLE in the denominator is ˆ θ = t . Therefore

  76. . the LRT statistic is March 26th, 2013 Biostatistics 602 - Lecture 19 Hyun Min Kang c log c n t = c n t exp t LRT rejects H if and only if . 22 / 33 . . . . . . . . Solution (cont’d) Summary . Unbiased Test LRT Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . The numerator is fixed, and MLE in the denominator is ˆ θ = t . Therefore − n ( t − θ 0 ) 2 [ ] λ ( t ) = exp 2 σ 2

  77. . the LRT statistic is March 26th, 2013 Biostatistics 602 - Lecture 19 Hyun Min Kang c log c n t = c n t exp t . 22 / 33 Unbiased Test Recap Solution (cont’d) . . . . . . . . Summary . LRT . . . . . . . . . . . . . . . . . . . . . . . . . . . The numerator is fixed, and MLE in the denominator is ˆ θ = t . Therefore − n ( t − θ 0 ) 2 [ ] λ ( t ) = exp 2 σ 2 LRT rejects H 0 if and only if

  78. . Solution (cont’d) March 26th, 2013 Biostatistics 602 - Lecture 19 Hyun Min Kang c log c n t = c . the LRT statistic is 22 / 33 Summary . . . Unbiased Test . . . . . . Recap LRT . . . . . . . . . . . . . . . . . . . . . . . . . . . The numerator is fixed, and MLE in the denominator is ˆ θ = t . Therefore − n ( t − θ 0 ) 2 [ ] λ ( t ) = exp 2 σ 2 LRT rejects H 0 if and only if − n ( t − θ 0 ) 2 [ ] λ ( t ) = exp ≤ 2 σ 2

  79. . . March 26th, 2013 Biostatistics 602 - Lecture 19 Hyun Min Kang = c . the LRT statistic is Solution (cont’d) Summary 22 / 33 Unbiased Test Recap . . . . . . . . LRT . . . . . . . . . . . . . . . . . . . . . . . . . . . The numerator is fixed, and MLE in the denominator is ˆ θ = t . Therefore − n ( t − θ 0 ) 2 [ ] λ ( t ) = exp 2 σ 2 LRT rejects H 0 if and only if − n ( t − θ 0 ) 2 [ ] λ ( t ) = exp ≤ 2 σ 2 � � t − θ 0 √ − 2 log c = c ∗ � � ⇒ σ / √ n � ≥ � � �

  80. . c sup Pr T n c Pr T n c Pr Z Pr Z A size c Pr Z c Z T n z Hyun Min Kang Biostatistics 602 - Lecture 19 March 26th, 2013 test satisfies 23 / 33 . Solution (cont’d) . . . . . . . . Recap LRT Unbiased Test . Summary Note that n . . . . . . . . . . . . . . . . . . . . . . . . . . . θ, σ 2 ( ) T = X ∼ N T − θ 0 σ / √ n ∼ N (0 , 1)

  81. . Pr Z . Pr T n c Pr Z c c sup Pr Z c Z T n z Hyun Min Kang Biostatistics 602 - Lecture 19 March 26th, 2013 Pr 23 / 33 Note that . Summary . Unbiased Test LRT Solution (cont’d) . . . . . Recap . n . . . . . . . . . . . . . . . . . . . . . . . . . . . . θ, σ 2 ( ) T = X ∼ N T − θ 0 σ / √ n ∼ N (0 , 1) A size α test satisfies (� T − θ � ) � ≥ c ∗ � σ / √ n � = α � � θ ∈ Ω 0 �

  82. . c Pr . Pr Pr Z c Pr Z Pr Z n c Z T n z Hyun Min Kang Biostatistics 602 - Lecture 19 March 26th, 2013 sup 23 / 33 Solution (cont’d) Note that Summary . Unbiased Test LRT . Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . θ, σ 2 ( ) T = X ∼ N T − θ 0 σ / √ n ∼ N (0 , 1) A size α test satisfies (� T − θ � ) � ≥ c ∗ � σ / √ n � = α � � θ ∈ Ω 0 � (� � T − θ 0 ) � ≥ c ∗ � � σ / √ n = α � � �

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend