basu s theorem lecture 06 biostatistics 602 statistical
play

Basus Theorem Lecture 06 Biostatistics 602 - Statistical Inference - PowerPoint PPT Presentation

. . January 29th, 2013 Biostatistics 602 - Lecture 07 Hyun Min Kang January 29th, 2013 Hyun Min Kang Basus Theorem Lecture 06 Biostatistics 602 - Statistical Inference . Summary . . Basus Theorem Complete Statistics . . . . . .


  1. . Problem January 29th, 2013 Biostatistics 602 - Lecture 07 Hyun Min Kang . . . Solution . . . 5 / 21 . Example from Stigler (1972) Am. Stat. Summary . Basu’s Theorem Complete Statistics . . . . . . . . . . . . . . . . . . . . . . . Let X is a uniform random sample from { 1 , · · · , θ } where θ ∈ Ω = N . Is T ( X ) = X a complete statistic? Consider a function g ( T ) such that E [ g ( T ) | θ ] = 0 for all θ ∈ N . Note that f X ( x ) = 1 θ I ( x ∈ { 1 , · · · , θ } ) = 1 θ I N θ ( x ) . θ θ 1 θ g ( x ) = 1 ∑ ∑ E [ g ( T ) | θ ] = E [ g ( X ) | θ ] = g ( x ) = 0 θ x =1 x =1 θ ∑ g ( x ) = 0 x =1

  2. • if • . • if g k . . k , x g x g . . . Therefore, g x for all x , and T X X is a complete statistic for . Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 g k g . . . . . . . . . . . . . . . . Complete Statistics Basu’s Theorem Summary g Solution (cont’d) , x g x g 6 / 21 . . . . . . . . . for all θ ∈ N , which implies • if θ = 1 , ∑ θ x =1 g ( x ) = g (1) = 0

  3. • . • if . k , x g x g g k g k . . for all x , and T X X is a complete statistic for . Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 Therefore, g x . . Complete Statistics . . . . . . . . . . . . . . Basu’s Theorem . Summary Solution (cont’d) 6 / 21 . . . . . . . . . for all θ ∈ N , which implies • if θ = 1 , ∑ θ x =1 g ( x ) = g (1) = 0 • if θ = 2 , ∑ θ x =1 g ( x ) = g (1) + g (2) = g (2) = 0 .

  4. . . January 29th, 2013 Biostatistics 602 - Lecture 07 Hyun Min Kang . X is a complete statistic for , and T X for all x Therefore, g x . . 6 / 21 . Solution (cont’d) . . Summary . . Basu’s Theorem Complete Statistics . . . . . . . . . . . . . . . . . . . for all θ ∈ N , which implies • if θ = 1 , ∑ θ x =1 g ( x ) = g (1) = 0 • if θ = 2 , ∑ θ x =1 g ( x ) = g (1) + g (2) = g (2) = 0 . • . • if θ = k , ∑ θ x =1 g ( x ) = g (1) + · · · + g ( k − 1) = g ( k ) = 0 .

  5. . Summary January 29th, 2013 Biostatistics 602 - Lecture 07 Hyun Min Kang . . . Solution (cont’d) 6 / 21 . Basu’s Theorem . . . . . . . . . . . . . . Complete Statistics . . . . . . . . . for all θ ∈ N , which implies • if θ = 1 , ∑ θ x =1 g ( x ) = g (1) = 0 • if θ = 2 , ∑ θ x =1 g ( x ) = g (1) + g (2) = g (2) = 0 . • . • if θ = k , ∑ θ x =1 g ( x ) = g (1) + · · · + g ( k − 1) = g ( k ) = 0 . Therefore, g ( x ) = 0 for all x ∈ N , and T ( X ) = X is a complete statistic for θ ∈ Ω = N .

  6. . x . . Define a nonzero g x as follows g x x n x n otherwise E g T g x . n n Because does not include n , g x for all n , and T X X is not a complete statistic. Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 . . . . . . . . . . . . . . . . . . Complete Statistics Basu’s Theorem . Summary Is the previous example barely complete? . Modified Problem . . Is T X X a complete statistic? . Solution . . 7 / 21 . . . . . . . . . Let X is a uniform random sample from { 1 , · · · , θ } where θ ∈ Ω = N − { n } .

  7. . g x . Define a nonzero g x as follows g x x n x n otherwise E g T x n . n Because does not include n , g x for all n , and T X X is not a complete statistic. Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 . . . Is the previous example barely complete? . . . . . . . . . . . . . . Complete Statistics Basu’s Theorem . Summary . . Modified Problem . . . Solution . . . 7 / 21 . . . . . . . . . Let X is a uniform random sample from { 1 , · · · , θ } where θ ∈ Ω = N − { n } . Is T ( X ) = X a complete statistic?

  8. . Because . otherwise E g T x g x n n does not include n , g x . for all n , and T X X is not a complete statistic. Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 . 7 / 21 Solution . . . . . . . . . . . . . . . Complete Statistics Basu’s Theorem . Summary Is the previous example barely complete? . Modified Problem . . . . . . . . . . . Let X is a uniform random sample from { 1 , · · · , θ } where θ ∈ Ω = N − { n } . Is T ( X ) = X a complete statistic? Define a nonzero g ( x ) as follows  1 x = n  g ( x ) = − 1 x = n + 1 0 

  9. . . January 29th, 2013 Biostatistics 602 - Lecture 07 Hyun Min Kang X is not a complete statistic. T X n , and for all does not include n , g x Because otherwise . . . Solution 7 / 21 . . . Modified Problem . Summary . . Basu’s Theorem . . Is the previous example barely complete? . . . . . . . . . . Complete Statistics . . . . . . . . . Let X is a uniform random sample from { 1 , · · · , θ } where θ ∈ Ω = N − { n } . Is T ( X ) = X a complete statistic? Define a nonzero g ( x ) as follows  1 x = n  g ( x ) = − 1 x = n + 1 0  { 0 θ 1 θ ̸ = n ∑ E [ g ( T ) | θ ] = g ( x ) = 1 θ = n θ θ x =1

  10. . Modified Problem January 29th, 2013 Biostatistics 602 - Lecture 07 Hyun Min Kang otherwise . . . Solution . . . 7 / 21 . Complete Statistics . . . Is the previous example barely complete? . . . . . . . . . . . . Summary Basu’s Theorem . . . . . . . . . Let X is a uniform random sample from { 1 , · · · , θ } where θ ∈ Ω = N − { n } . Is T ( X ) = X a complete statistic? Define a nonzero g ( x ) as follows  1 x = n  g ( x ) = − 1 x = n + 1 0  { 0 θ 1 θ ̸ = n ∑ E [ g ( T ) | θ ] = g ( x ) = 1 θ = n θ θ x =1 Because Ω does not include n , g ( x ) = 0 for all θ ∈ Ω = N − { n } , and T ( X ) = X is not a complete statistic.

  11. • We know that R X n • Define g T X n • Then E g T . . . X is an ancillary statistic, which do not depend on . . . X E R . Note that E R is constant to . E R E R , so T is not a complete statistic. Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 . . . Last Lecture : Ancillary and Complete Statistics . . . . . . . . . . . . . . Complete Statistics Basu’s Theorem . Summary . . Problem . . i.i.d. . A Simple Proof . 8 / 21 . . . . . . . . . • Let X 1 , · · · , X n ∼ Uniform ( θ, θ + 1) , θ ∈ R . • Is T ( X ) = ( X (1) , X ( n ) ) a complete statistic?

  12. • Define g T X n • Then E g T . E R . Note that E R is constant to A Simple Proof . . X . . E R E R , so T is not a complete statistic. Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 . 8 / 21 Summary Last Lecture : Ancillary and Complete Statistics . . . . . . . . . . Complete Statistics Basu’s Theorem . i.i.d. . . . . Problem . . . . . . . . . . . . • Let X 1 , · · · , X n ∼ Uniform ( θ, θ + 1) , θ ∈ R . • Is T ( X ) = ( X (1) , X ( n ) ) a complete statistic? • We know that R = X ( n ) − X (1) is an ancillary statistic, which do not depend on θ .

  13. • Then E g T . . January 29th, 2013 Biostatistics 602 - Lecture 07 Hyun Min Kang , so T is not a complete statistic. E R E R . . A Simple Proof . . i.i.d. . Problem . . . . . . . . . . . . . . Complete Statistics 8 / 21 Basu’s Theorem . Summary Last Lecture : Ancillary and Complete Statistics . . . . . . . . . . • Let X 1 , · · · , X n ∼ Uniform ( θ, θ + 1) , θ ∈ R . • Is T ( X ) = ( X (1) , X ( n ) ) a complete statistic? • We know that R = X ( n ) − X (1) is an ancillary statistic, which do not depend on θ . • Define g ( T ) = X ( n ) − X (1) − E ( R ) . Note that E ( R ) is constant to θ .

  14. . Problem January 29th, 2013 Biostatistics 602 - Lecture 07 Hyun Min Kang . . A Simple Proof . i.i.d. . . . . Complete Statistics . . . . Last Lecture : Ancillary and Complete Statistics . . . . . . . . . . Basu’s Theorem . Summary 8 / 21 . . . . . . . . . • Let X 1 , · · · , X n ∼ Uniform ( θ, θ + 1) , θ ∈ R . • Is T ( X ) = ( X (1) , X ( n ) ) a complete statistic? • We know that R = X ( n ) − X (1) is an ancillary statistic, which do not depend on θ . • Define g ( T ) = X ( n ) − X (1) − E ( R ) . Note that E ( R ) is constant to θ . • Then E [ g ( T ) | θ ] = E ( R ) − E ( R ) = 0 , so T is not a complete statistic.

  15. . Define g T . . . . . . . r T Proof E r T , which does not depend on the parameter because r T is ancillary. Then E g T for a non-zero function g T , and T X is not a complete statistic. Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 . . . Basu’s Theorem . . . . . . . . . . . . . . Complete Statistics . Summary Useful Fact 1 : Ancillary and Complete Statistics . Fact . . 9 / 21 . . . . . . . . . For a statistic T ( X ) , If a non-constant function of T , say r ( T ) is ancillary, then T ( X ) cannot be complete

  16. . . January 29th, 2013 Biostatistics 602 - Lecture 07 Hyun Min Kang g T , and T X is not a complete statistic. for a non-zero function Then E g T . . Proof . . . Fact . . . . . . . . . . . . . . . Complete Statistics 9 / 21 Basu’s Theorem . Summary Useful Fact 1 : Ancillary and Complete Statistics . . . . . . . . . For a statistic T ( X ) , If a non-constant function of T , say r ( T ) is ancillary, then T ( X ) cannot be complete Define g ( T ) = r ( T ) − E [ r ( T )] , which does not depend on the parameter θ because r ( T ) is ancillary.

  17. . . January 29th, 2013 Biostatistics 602 - Lecture 07 Hyun Min Kang . . Proof . . . Fact . Useful Fact 1 : Ancillary and Complete Statistics Summary . . . . . . . . . . . . . . Complete Statistics Basu’s Theorem . 9 / 21 . . . . . . . . . For a statistic T ( X ) , If a non-constant function of T , say r ( T ) is ancillary, then T ( X ) cannot be complete Define g ( T ) = r ( T ) − E [ r ( T )] , which does not depend on the parameter θ because r ( T ) is ancillary. Then E [ g ( T ) | θ ] = 0 for a non-zero function g ( T ) , and T ( X ) is not a complete statistic.

  18. . , then E g . . . E g T E g r T Assume that E g T for all r T . holds for all too. Because T X is a complete statistic, Pr g r T . Therefore Pr g T , and T is a complete statistic. Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 . . . Summary . . . . . . . . . . . . . . Complete Statistics Basu’s Theorem . Useful Fact 2 : Arbitrary Function of Complete Statistics . . Fact . . complete. . Proof . 10 / 21 . . . . . . . . . If T ( X ) is a complete statistic, then a function of T , say T ∗ = r ( T ) is also

  19. . holds for all . . Assume that E g T for all , then E g r T too. Because T X is a complete statistic, Pr g . r T . Therefore Pr g T , and T is a complete statistic. Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 . Proof complete. . . . . . . . . . . . . . . . Complete Statistics Basu’s Theorem Summary Useful Fact 2 : Arbitrary Function of Complete Statistics . Fact . . 10 / 21 . . . . . . . . . If T ( X ) is a complete statistic, then a function of T , say T ∗ = r ( T ) is also E [ g ( T ∗ ) | θ ] = E [ g ◦ r ( T ) | θ ]

  20. . too. Because T X is a complete statistic, Pr g Proof . . then E g r T holds for all r T complete. . Therefore Pr g T , and T is a complete statistic. Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 . . 10 / 21 . . . . . . . . . . . . . . . Complete Statistics Basu’s Theorem Summary . Useful Fact 2 : Arbitrary Function of Complete Statistics . Fact . . . . . . . . . . If T ( X ) is a complete statistic, then a function of T , say T ∗ = r ( T ) is also E [ g ( T ∗ ) | θ ] = E [ g ◦ r ( T ) | θ ] Assume that E [ g ( T ∗ ) | θ ] = 0 for all θ ,

  21. . . January 29th, 2013 Biostatistics 602 - Lecture 07 Hyun Min Kang , and T is a complete statistic. Therefore Pr g T . r T Because T X is a complete statistic, Pr g too. . . Proof . complete. . . . . . . . . . . . . . . . . Complete Statistics Basu’s Theorem 10 / 21 Useful Fact 2 : Arbitrary Function of Complete Statistics Summary . Fact . . . . . . . . . . If T ( X ) is a complete statistic, then a function of T , say T ∗ = r ( T ) is also E [ g ( T ∗ ) | θ ] = E [ g ◦ r ( T ) | θ ] Assume that E [ g ( T ∗ ) | θ ] = 0 for all θ , then E [ g ◦ r ( T ) | θ ] = 0 holds for all θ

  22. . . January 29th, 2013 Biostatistics 602 - Lecture 07 Hyun Min Kang , and T is a complete statistic. Therefore Pr g T . r T Pr g . . Proof . . complete. . Basu’s Theorem . . . . . . . . . . . . . . Complete Statistics 10 / 21 . Summary Useful Fact 2 : Arbitrary Function of Complete Statistics . Fact . . . . . . . . . If T ( X ) is a complete statistic, then a function of T , say T ∗ = r ( T ) is also E [ g ( T ∗ ) | θ ] = E [ g ◦ r ( T ) | θ ] Assume that E [ g ( T ∗ ) | θ ] = 0 for all θ , then E [ g ◦ r ( T ) | θ ] = 0 holds for all θ too. Because T ( X ) is a complete statistic,

  23. . Fact January 29th, 2013 Biostatistics 602 - Lecture 07 Hyun Min Kang . . Proof . complete. . . . . . . . . . . . . . . . . . Useful Fact 2 : Arbitrary Function of Complete Statistics . 10 / 21 Complete Statistics Basu’s Theorem . Summary . . . . . . . . . If T ( X ) is a complete statistic, then a function of T , say T ∗ = r ( T ) is also E [ g ( T ∗ ) | θ ] = E [ g ◦ r ( T ) | θ ] Assume that E [ g ( T ∗ ) | θ ] = 0 for all θ , then E [ g ◦ r ( T ) | θ ] = 0 holds for all θ too. Because T ( X ) is a complete statistic, Pr [ g ◦ r ( T ) = 0] = 1 , ∀ θ ∈ Ω . Therefore Pr [ g ( T ∗ ) = 0] = 1 , and T ∗ is a complete statistic.

  24. . . . . . Any complete, and sufficient statistic is also a minimal sufficient statistic . The converse is NOT true . . . . . . . . A minimal sufficient statistic is not necessarily complete. (Recall the example in the last lecture). Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 . . . Summary . . . . . . . . . . . . . . Complete Statistics Basu’s Theorem . Theorem 6.2.28 - Lehman and Schefle (1950) . . The textbook version . . If a minimal sufficient statistic exists, then any complete statistic is also a minimal sufficient statistic. . Paraphrased version . 11 / 21 . . . . . . . . .

  25. . . Any complete, and sufficient statistic is also a minimal sufficient statistic . The converse is NOT true . . . . . . . . A minimal sufficient statistic is not necessarily complete. (Recall the example in the last lecture). Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 . Paraphrased version . . . . . . . . . . . . . . . . Complete Statistics Basu’s Theorem . Summary Theorem 6.2.28 - Lehman and Schefle (1950) . The textbook version . . If a minimal sufficient statistic exists, then any complete statistic is also a minimal sufficient statistic. 11 / 21 . . . . . . . . .

  26. . minimal sufficient statistic. January 29th, 2013 Biostatistics 602 - Lecture 07 Hyun Min Kang example in the last lecture). A minimal sufficient statistic is not necessarily complete. (Recall the . . The converse is NOT true . Any complete, and sufficient statistic is also a minimal sufficient statistic . . Paraphrased version . If a minimal sufficient statistic exists, then any complete statistic is also a . Complete Statistics . . . . . . . . . . . . . . Basu’s Theorem . . Summary Theorem 6.2.28 - Lehman and Schefle (1950) . The textbook version . 11 / 21 . . . . . . . . .

  27. . s Suppose that S X is an ancillary statistic. We want to show that Pr S X s T X t Pr S X s t Alternatively, we can show that Pr T X t S X Pr T X . t Pr T X t S X s Pr T X t Pr S X s Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 . . . . . . . . . . . . . . . . . . Complete Statistics Basu’s Theorem . Summary Basu’s Theorem . Theorem 6.2.24 . . every ancillary statistic. . Proof strategy - for discrete case . . . . 12 / 21 . . . . . . . . . If T ( X ) is a complete sufficient statistic, then T ( X ) is independent of

  28. . t Alternatively, we can show that Pr T X t S X s Pr T X t Pr T X S X . s Pr T X t Pr S X s Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 . . Proof strategy - for discrete case . . . . . . . . . . . . . . . Complete Statistics Basu’s Theorem . Summary Basu’s Theorem . Theorem 6.2.24 . . every ancillary statistic. 12 / 21 . . . . . . . . . If T ( X ) is a complete sufficient statistic, then T ( X ) is independent of Suppose that S ( X ) is an ancillary statistic. We want to show that Pr ( S ( X ) = s | T ( X ) = t ) = Pr ( S ( X ) = s ) , ∀ t ∈ T

  29. . S X . . . Alternatively, we can show that Pr T X t s every ancillary statistic. Pr T X t Pr S X s Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 . Proof strategy - for discrete case 12 / 21 . . . . . . . . . . . . . . . Complete Statistics Basu’s Theorem . Summary Basu’s Theorem . Theorem 6.2.24 . . . . . . . . . . If T ( X ) is a complete sufficient statistic, then T ( X ) is independent of Suppose that S ( X ) is an ancillary statistic. We want to show that Pr ( S ( X ) = s | T ( X ) = t ) = Pr ( S ( X ) = s ) , ∀ t ∈ T Pr ( T ( X ) = t | S ( X ) = s ) = Pr ( T ( X ) = t )

  30. . Theorem 6.2.24 January 29th, 2013 Biostatistics 602 - Lecture 07 Hyun Min Kang Alternatively, we can show that . . Proof strategy - for discrete case . . . . every ancillary statistic. . . . . . . . . . . . . . . Basu’s Theorem . Complete Statistics Basu’s Theorem . Summary 12 / 21 . . . . . . . . . If T ( X ) is a complete sufficient statistic, then T ( X ) is independent of Suppose that S ( X ) is an ancillary statistic. We want to show that Pr ( S ( X ) = s | T ( X ) = t ) = Pr ( S ( X ) = s ) , ∀ t ∈ T Pr ( T ( X ) = t | S ( X ) = s ) = Pr ( T ( X ) = t ) Pr ( T ( X ) = t ∧ S ( X ) = s ) = Pr ( T ( X ) = t ) Pr ( S ( X ) = s )

  31. • As T X is sufficient, by definition, f X X T X • Because S X is a function of X , Pr S X T X • We need to show that . of . Pr S X s T X Pr S X t s t . Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 is also independent . . is independent of Proof of Basu’s Theorem Summary . Basu’s Theorem Complete Statistics . . . . . . . . . . . . . . 13 / 21 . . . . . . . . . • As S ( X ) is ancillary, by definition, it does not depend on θ .

  32. • Because S X is a function of X , Pr S X T X • We need to show that is also independent January 29th, 2013 Biostatistics 602 - Lecture 07 Hyun Min Kang . t s Pr S X t s T X Pr S X . of . . Proof of Basu’s Theorem Summary . Basu’s Theorem Complete Statistics . . . . . . . . . . . . . . 13 / 21 . . . . . . . . . • As S ( X ) is ancillary, by definition, it does not depend on θ . • As T ( X ) is sufficient, by definition, f X ( X | T ( X )) is independent of θ .

  33. • We need to show that . . January 29th, 2013 Biostatistics 602 - Lecture 07 Hyun Min Kang . t s Pr S X t s T X Pr S X 13 / 21 Proof of Basu’s Theorem Summary . Basu’s Theorem Complete Statistics . . . . . . . . . . . . . . . . . . . . . . . • As S ( X ) is ancillary, by definition, it does not depend on θ . • As T ( X ) is sufficient, by definition, f X ( X | T ( X )) is independent of θ . • Because S ( X ) is a function of X , Pr ( S ( X ) | T ( X )) is also independent of θ .

  34. . Basu’s Theorem January 29th, 2013 Biostatistics 602 - Lecture 07 Hyun Min Kang Proof of Basu’s Theorem . . Summary Complete Statistics . . . . . . . . . . . . . . 13 / 21 . . . . . . . . . • As S ( X ) is ancillary, by definition, it does not depend on θ . • As T ( X ) is sufficient, by definition, f X ( X | T ( X )) is independent of θ . • Because S ( X ) is a function of X , Pr ( S ( X ) | T ( X )) is also independent of θ . • We need to show that Pr ( S ( X ) = s | T ( X ) = t ) = Pr ( S ( X ) = s ) , ∀ t ∈ T .

  35. . s Define g t Pr S X s T X t Pr S X s . Taking (1)-(3), t Pr S X s T X t Pr S X Pr T X t t t g t Pr T X t E g T X T X is complete, so g t almost surely for all possible t . Therefore, S X is independent of T X . Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 (3) s Pr T X . Pr S X . . . . . . . . . . . . . . Complete Statistics Basu’s Theorem . Summary Proof of Basu’s Theorem (cont’d) 14 / 21 Pr S X s Pr S X s t Pr T X t (2) t . . . . . . . . . ∑ Pr ( S ( X ) = s | θ ) = Pr ( S ( X ) = s | T ( X ) = t ) Pr ( T ( X ) = t | θ ) (1) t ∈T

  36. . Pr T X Pr S X s T X t Pr S X s . Taking (1)-(3), t Pr S X s T X t Pr S X s t (3) t g t Pr T X t E g T X T X is complete, so g t almost surely for all possible t . Therefore, S X is independent of T X . Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 Define g t t . s Pr T X . . . . . . . . . . . . . . Complete Statistics Basu’s Theorem . Summary Proof of Basu’s Theorem (cont’d) 14 / 21 t (2) Pr S X . . . . . . . . . ∑ Pr ( S ( X ) = s | θ ) = Pr ( S ( X ) = s | T ( X ) = t ) Pr ( T ( X ) = t | θ ) (1) t ∈T ∑ Pr ( S ( X ) = s | θ ) = Pr ( S ( X ) = s ) Pr ( T ( X ) = t | θ ) t ∈T

  37. . Pr T X Pr S X s T X t Pr S X s . Taking (1)-(3), t Pr S X s T X t Pr S X s t (3) t g t Pr T X t E g T X T X is complete, so g t almost surely for all possible t . Therefore, S X is independent of T X . Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 Define g t 14 / 21 . . . (2) . . . . . . . . . . . . Complete Statistics Basu’s Theorem . Summary Proof of Basu’s Theorem (cont’d) . . . . . . . . . ∑ Pr ( S ( X ) = s | θ ) = Pr ( S ( X ) = s | T ( X ) = t ) Pr ( T ( X ) = t | θ ) (1) t ∈T ∑ Pr ( S ( X ) = s | θ ) = Pr ( S ( X ) = s ) Pr ( T ( X ) = t | θ ) t ∈T ∑ = Pr ( S ( X ) = s ) Pr ( T ( X ) = t | θ ) t ∈T

  38. . t Taking (1)-(3), t Pr S X s T X t Pr S X s Pr T X t g t Pr T X . t E g T X T X is complete, so g t almost surely for all possible t . Therefore, S X is independent of T X . Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 (3) 14 / 21 (2) . . . . . . . . . . . . . . Complete Statistics Basu’s Theorem . Summary Proof of Basu’s Theorem (cont’d) . . . . . . . . . ∑ Pr ( S ( X ) = s | θ ) = Pr ( S ( X ) = s | T ( X ) = t ) Pr ( T ( X ) = t | θ ) (1) t ∈T ∑ Pr ( S ( X ) = s | θ ) = Pr ( S ( X ) = s ) Pr ( T ( X ) = t | θ ) t ∈T ∑ = Pr ( S ( X ) = s ) Pr ( T ( X ) = t | θ ) t ∈T Define g ( t ) = Pr ( S ( X ) = s | T ( X ) = t ) − Pr ( S ( X ) = s ) .

  39. . . January 29th, 2013 Biostatistics 602 - Lecture 07 Hyun Min Kang Therefore, S X is independent of T X . . almost surely for all possible t T X is complete, so g t E g T X t g t Pr T X t (3) (2) 14 / 21 Summary . Proof of Basu’s Theorem (cont’d) Basu’s Theorem Complete Statistics . . . . . . . . . . . . . . . . . . . . . . . ∑ Pr ( S ( X ) = s | θ ) = Pr ( S ( X ) = s | T ( X ) = t ) Pr ( T ( X ) = t | θ ) (1) t ∈T ∑ Pr ( S ( X ) = s | θ ) = Pr ( S ( X ) = s ) Pr ( T ( X ) = t | θ ) t ∈T ∑ = Pr ( S ( X ) = s ) Pr ( T ( X ) = t | θ ) t ∈T Define g ( t ) = Pr ( S ( X ) = s | T ( X ) = t ) − Pr ( S ( X ) = s ) . Taking (1)-(3), ∑ [ Pr ( S ( X ) = s | T ( X ) = t ) − Pr ( S ( X ) = s )] Pr ( T ( X ) = t | θ ) = 0 t ∈T

  40. . . January 29th, 2013 Biostatistics 602 - Lecture 07 Hyun Min Kang Therefore, S X is independent of T X . . almost surely for all possible t T X is complete, so g t (3) (2) 14 / 21 Proof of Basu’s Theorem (cont’d) . . . . . . . . . . . . Basu’s Theorem . . . Summary Complete Statistics . . . . . . . . . ∑ Pr ( S ( X ) = s | θ ) = Pr ( S ( X ) = s | T ( X ) = t ) Pr ( T ( X ) = t | θ ) (1) t ∈T ∑ Pr ( S ( X ) = s | θ ) = Pr ( S ( X ) = s ) Pr ( T ( X ) = t | θ ) t ∈T ∑ = Pr ( S ( X ) = s ) Pr ( T ( X ) = t | θ ) t ∈T Define g ( t ) = Pr ( S ( X ) = s | T ( X ) = t ) − Pr ( S ( X ) = s ) . Taking (1)-(3), ∑ [ Pr ( S ( X ) = s | T ( X ) = t ) − Pr ( S ( X ) = s )] Pr ( T ( X ) = t | θ ) = 0 t ∈T ∑ g ( t ) Pr ( T ( X ) = t | θ ) = E [ g ( T ( X )) | θ ] = 0 t ∈T

  41. . Summary January 29th, 2013 Biostatistics 602 - Lecture 07 Hyun Min Kang Therefore, S X is independent of T X . (3) (2) . Proof of Basu’s Theorem (cont’d) 14 / 21 . Basu’s Theorem . . . . . . . . . . . . . . Complete Statistics . . . . . . . . . ∑ Pr ( S ( X ) = s | θ ) = Pr ( S ( X ) = s | T ( X ) = t ) Pr ( T ( X ) = t | θ ) (1) t ∈T ∑ Pr ( S ( X ) = s | θ ) = Pr ( S ( X ) = s ) Pr ( T ( X ) = t | θ ) t ∈T ∑ = Pr ( S ( X ) = s ) Pr ( T ( X ) = t | θ ) t ∈T Define g ( t ) = Pr ( S ( X ) = s | T ( X ) = t ) − Pr ( S ( X ) = s ) . Taking (1)-(3), ∑ [ Pr ( S ( X ) = s | T ( X ) = t ) − Pr ( S ( X ) = s )] Pr ( T ( X ) = t | θ ) = 0 t ∈T ∑ g ( t ) Pr ( T ( X ) = t | θ ) = E [ g ( T ( X )) | θ ] = 0 t ∈T T ( X ) is complete, so g ( t ) = 0 almost surely for all possible t ∈ T .

  42. . Summary January 29th, 2013 Biostatistics 602 - Lecture 07 Hyun Min Kang (3) (2) . Proof of Basu’s Theorem (cont’d) 14 / 21 . . . . . . . . . . . . . . Complete Statistics . Basu’s Theorem . . . . . . . . . ∑ Pr ( S ( X ) = s | θ ) = Pr ( S ( X ) = s | T ( X ) = t ) Pr ( T ( X ) = t | θ ) (1) t ∈T ∑ Pr ( S ( X ) = s | θ ) = Pr ( S ( X ) = s ) Pr ( T ( X ) = t | θ ) t ∈T ∑ = Pr ( S ( X ) = s ) Pr ( T ( X ) = t | θ ) t ∈T Define g ( t ) = Pr ( S ( X ) = s | T ( X ) = t ) − Pr ( S ( X ) = s ) . Taking (1)-(3), ∑ [ Pr ( S ( X ) = s | T ( X ) = t ) − Pr ( S ( X ) = s )] Pr ( T ( X ) = t | θ ) = 0 t ∈T ∑ g ( t ) Pr ( T ( X ) = t | θ ) = E [ g ( T ( X )) | θ ] = 0 t ∈T T ( X ) is complete, so g ( t ) = 0 almost surely for all possible t ∈ T . Therefore, S ( X ) is independent of T ( X ) .

  43. • Calculate E X n X n • We know that X n is sufficient statistic. • We know that X n is complete, too. • We can easily show that X X n is an ancillary statistic. • Then we can leverage Basu’s Theorem for the calculation. . . A strategy for the solution . . . . . . X . Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 . and E X . . . . . . . . . . . . . . . Complete Statistics Basu’s Theorem . Summary Application of Basu’s Theorem . Problem . . i.i.d. X 15 / 21 . . . . . . . . . • X 1 , · · · , X n ∼ Uniform (0 , θ ) .

  44. • We know that X n is sufficient statistic. • We know that X n is complete, too. • We can easily show that X X n is an ancillary statistic. • Then we can leverage Basu’s Theorem for the calculation. . . . A strategy for the solution . . . . . . . . Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 and E 15 / 21 . . . . . . . . . . . Basu’s Theorem . Summary Application of Basu’s Theorem Problem . . i.i.d. . . . . Complete Statistics . . . . . . . . . • X 1 , · · · , X n ∼ Uniform (0 , θ ) . [ X (1) ] [ X (1) + X (2) ] • Calculate E X ( n ) X ( n )

  45. • We know that X n is complete, too. • We can easily show that X X n is an ancillary statistic. • Then we can leverage Basu’s Theorem for the calculation. . i.i.d. January 29th, 2013 Biostatistics 602 - Lecture 07 Hyun Min Kang . . A strategy for the solution . and E . 15 / 21 . Summary . . . . . . . . . . . . . . Complete Statistics Basu’s Theorem . Application of Basu’s Theorem Problem . . . . . . . . . . . • X 1 , · · · , X n ∼ Uniform (0 , θ ) . [ X (1) ] [ X (1) + X (2) ] • Calculate E X ( n ) X ( n ) • We know that X ( n ) is sufficient statistic.

  46. • We can easily show that X X n is an ancillary statistic. • Then we can leverage Basu’s Theorem for the calculation. . . January 29th, 2013 Biostatistics 602 - Lecture 07 Hyun Min Kang . . A strategy for the solution . and E . i.i.d. 15 / 21 . . . . . . . . . . . . . . . . Complete Statistics Basu’s Theorem Summary Application of Basu’s Theorem . Problem . . . . . . . . . • X 1 , · · · , X n ∼ Uniform (0 , θ ) . [ X (1) ] [ X (1) + X (2) ] • Calculate E X ( n ) X ( n ) • We know that X ( n ) is sufficient statistic. • We know that X ( n ) is complete, too.

  47. • Then we can leverage Basu’s Theorem for the calculation. . . January 29th, 2013 Biostatistics 602 - Lecture 07 Hyun Min Kang . . A strategy for the solution . and E . i.i.d. . 15 / 21 Problem . . . . . . . . . . . Complete Statistics Basu’s Theorem . . . . Summary Application of Basu’s Theorem . . . . . . . . . . • X 1 , · · · , X n ∼ Uniform (0 , θ ) . [ X (1) ] [ X (1) + X (2) ] • Calculate E X ( n ) X ( n ) • We know that X ( n ) is sufficient statistic. • We know that X ( n ) is complete, too. • We can easily show that X (1) / X ( n ) is an ancillary statistic.

  48. . . January 29th, 2013 Biostatistics 602 - Lecture 07 Hyun Min Kang . . A strategy for the solution . and E . i.i.d. . 15 / 21 Problem . . . . . . . . . . . Complete Statistics . . Basu’s Theorem . . . Summary Application of Basu’s Theorem . . . . . . . . . • X 1 , · · · , X n ∼ Uniform (0 , θ ) . [ X (1) ] [ X (1) + X (2) ] • Calculate E X ( n ) X ( n ) • We know that X ( n ) is sufficient statistic. • We know that X ( n ) is complete, too. • We can easily show that X (1) / X ( n ) is an ancillary statistic. • Then we can leverage Basu’s Theorem for the calculation.

  49. f Y y X n Y n Y n does not depend on X n is I y X Y . Because the distribution of Y Uniform , X an ancillary statistic for . Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 . , and Y . , then dx dy . . . . . . . . . . . . . . Complete Statistics Basu’s Theorem . Summary Let y x 16 / 21 . . . . . . . . . Showing that X (1) / X ( n ) is Ancillary 1 f X ( x | θ ) = θ I (0 < x < θ )

  50. f Y y X n Y n Y n does not depend on X n is . y X Y , X Because the distribution of Y an ancillary statistic for . Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 I 16 / 21 . Complete Statistics . . . . . . . . . . . . . . Basu’s Theorem . Summary . . . . . . . . . Showing that X (1) / X ( n ) is Ancillary 1 f X ( x | θ ) = θ I (0 < x < θ ) Let y = x / θ , then | dx / dy | = θ , and Y ∼ Uniform (0 , 1) .

  51. X n Y n Y n does not depend on X n is . . January 29th, 2013 Biostatistics 602 - Lecture 07 Hyun Min Kang . an ancillary statistic for , X Because the distribution of Y Y X 16 / 21 . . . . . Summary Basu’s Theorem Complete Statistics . . . . . . . . . . . . . . . . . . . Showing that X (1) / X ( n ) is Ancillary 1 f X ( x | θ ) = θ I (0 < x < θ ) Let y = x / θ , then | dx / dy | = θ , and Y ∼ Uniform (0 , 1) . f Y ( y | θ ) = I (0 < y < 1)

  52. Y n does not depend on X n is . . January 29th, 2013 Biostatistics 602 - Lecture 07 Hyun Min Kang . an ancillary statistic for , X Because the distribution of Y 16 / 21 Summary . . . . . . . . . . . . . . Complete Statistics . Basu’s Theorem . . . . . . . . . Showing that X (1) / X ( n ) is Ancillary 1 f X ( x | θ ) = θ I (0 < x < θ ) Let y = x / θ , then | dx / dy | = θ , and Y ∼ Uniform (0 , 1) . f Y ( y | θ ) = I (0 < y < 1) X (1) Y (1) = X ( n ) Y ( n )

  53. . Basu’s Theorem January 29th, 2013 Biostatistics 602 - Lecture 07 Hyun Min Kang . Summary . 16 / 21 Complete Statistics . . . . . . . . . . . . . . . . . . . . . . . Showing that X (1) / X ( n ) is Ancillary 1 f X ( x | θ ) = θ I (0 < x < θ ) Let y = x / θ , then | dx / dy | = θ , and Y ∼ Uniform (0 , 1) . f Y ( y | θ ) = I (0 < y < 1) X (1) Y (1) = X ( n ) Y ( n ) Because the distribution of Y 1 , · · · , Y n does not depend on θ , X (1) / X ( n ) is an ancillary statistic for θ .

  54. • If X and Y are independent, E XY X n E X n X n X n X n E X n E Y n E Y n E Y E Y E X X E Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 X E . . X . . . . . . . . . . . . . . Complete Statistics Basu’s Theorem . Summary Applying Basu’s Theorem E X E Y . E X E 17 / 21 . . . . . . . . . • By Basu’s Theorem, X (1) / X ( n ) is independent of X ( n ) .

  55. X n E X n X n X n X n E X n E Y n E Y n E Y E Y E X Hyun Min Kang X E Biostatistics 602 - Lecture 07 January 29th, 2013 X E . . X . . . . . . . . . . . . . . Complete Statistics Basu’s Theorem . Summary Applying Basu’s Theorem E X E 17 / 21 . . . . . . . . . • By Basu’s Theorem, X (1) / X ( n ) is independent of X ( n ) . • If X and Y are independent, E ( XY ) = E ( X ) E ( Y ) .

  56. E X n X n X n E X n E Y n E Y n X E X . E X . E Y E Y Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 E 17 / 21 . . . . . . . . . . . . E . . Applying Basu’s Theorem Summary . Basu’s Theorem Complete Statistics . . . . . . . . . • By Basu’s Theorem, X (1) / X ( n ) is independent of X ( n ) . • If X and Y are independent, E ( XY ) = E ( X ) E ( Y ) . [ X (1) ] E [ X (1) ] = X ( n ) X ( n )

  57. X n E X n E Y n E Y n . E January 29th, 2013 Biostatistics 602 - Lecture 07 Hyun Min Kang E Y E Y E X X E E . 17 / 21 Applying Basu’s Theorem . . . . . . . . . . . . . . Complete Statistics Basu’s Theorem . Summary . . . . . . . . . • By Basu’s Theorem, X (1) / X ( n ) is independent of X ( n ) . • If X and Y are independent, E ( XY ) = E ( X ) E ( Y ) . [ X (1) ] [ X (1) ] [ ] E [ X (1) ] = = E X ( n ) X ( n ) X ( n ) X ( n )

  58. E X n E Y n E Y n . E January 29th, 2013 Biostatistics 602 - Lecture 07 Hyun Min Kang E Y E Y E X E E . 17 / 21 Basu’s Theorem . Complete Statistics Summary . . . . . . . . . . . Applying Basu’s Theorem . . . . . . . . . . . . • By Basu’s Theorem, X (1) / X ( n ) is independent of X ( n ) . • If X and Y are independent, E ( XY ) = E ( X ) E ( Y ) . [ X (1) ] [ X (1) ] [ ] E [ X (1) ] = = E X ( n ) X ( n ) X ( n ) X ( n ) [ X (1) ] X ( n )

  59. E Y n E Y n . E January 29th, 2013 Biostatistics 602 - Lecture 07 Hyun Min Kang E Y E Y E E . 17 / 21 Basu’s Theorem . Complete Statistics . . . . . . . . . . . Summary . Applying Basu’s Theorem . . . . . . . . . . . • By Basu’s Theorem, X (1) / X ( n ) is independent of X ( n ) . • If X and Y are independent, E ( XY ) = E ( X ) E ( Y ) . [ X (1) ] [ X (1) ] [ ] E [ X (1) ] = = E X ( n ) X ( n ) X ( n ) X ( n ) E [ X (1) ] [ X (1) ] = E [ X ( n ) ] X ( n )

  60. E Y n . Applying Basu’s Theorem January 29th, 2013 Biostatistics 602 - Lecture 07 Hyun Min Kang E Y E E . E 17 / 21 Summary . . . . . . . . . . . . . . . Basu’s Theorem Complete Statistics . . . . . . . . . • By Basu’s Theorem, X (1) / X ( n ) is independent of X ( n ) . • If X and Y are independent, E ( XY ) = E ( X ) E ( Y ) . [ X (1) ] [ X (1) ] [ ] E [ X (1) ] = = E X ( n ) X ( n ) X ( n ) X ( n ) E [ X (1) ] [ X (1) ] = E [ X ( n ) ] X ( n ) E [ θ Y (1) ] = E [ θ Y ( n ) ]

  61. . Summary January 29th, 2013 Biostatistics 602 - Lecture 07 Hyun Min Kang E E . E Applying Basu’s Theorem 17 / 21 . . . . . . . . . . . . . . . Basu’s Theorem Complete Statistics . . . . . . . . . • By Basu’s Theorem, X (1) / X ( n ) is independent of X ( n ) . • If X and Y are independent, E ( XY ) = E ( X ) E ( Y ) . [ X (1) ] [ X (1) ] [ ] E [ X (1) ] = = E X ( n ) X ( n ) X ( n ) X ( n ) E [ X (1) ] [ X (1) ] = E [ X ( n ) ] X ( n ) E [ θ Y (1) ] = E [ θ Y ( n ) ] E [ Y (1) ] = E [ Y ( n ) ]

  62. f Y y F Y y f Y y F Y y y n . n n I y n I y y Y Beta n E Y n Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 n I y f Y . . . . . . . . . . . . . . . Complete Statistics Basu’s Theorem Summary . Y I y yI y 18 / 21 . . . . . . . . . Obtaining E [ Y (1) ] ∼ Uniform (0 , 1)

  63. F Y y f Y y F Y y y n . n n I y n I y y Y Beta n E Y n Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 n I y f Y . . . . . . . . . . . . . . . Complete Statistics Basu’s Theorem . Summary yI Y y 18 / 21 . . . . . . . . . Obtaining E [ Y (1) ] ∼ Uniform (0 , 1) f Y ( y ) = I (0 < y < 1)

  64. f Y y F Y y y n . I n n I y n y y Y Beta n E Y n Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 n f Y . . . . . . . . . . . . . . . . Complete Statistics Basu’s Theorem Summary Y 18 / 21 . . . . . . . . . Obtaining E [ Y (1) ] ∼ Uniform (0 , 1) f Y ( y ) = I (0 < y < 1) F Y ( y ) = yI (0 < y < 1) + I ( y ≥ 1)

  65. y n . . January 29th, 2013 Biostatistics 602 - Lecture 07 Hyun Min Kang n E Y n Beta Y y I n 18 / 21 Summary . . . . . . . . . . . . . . Complete Statistics Basu’s Theorem Y . . . . . . . . . . Obtaining E [ Y (1) ] ∼ Uniform (0 , 1) f Y ( y ) = I (0 < y < 1) F Y ( y ) = yI (0 < y < 1) + I ( y ≥ 1) n ! ( n − 1)! f Y ( y ) [1 − F Y ( y )] n − 1 I (0 < y < 1) f Y (1) ( y ) =

  66. . Y January 29th, 2013 Biostatistics 602 - Lecture 07 Hyun Min Kang n E Y n Beta Y . 18 / 21 . Basu’s Theorem . . . . . . . . . . . . . . Summary Complete Statistics . . . . . . . . . Obtaining E [ Y (1) ] ∼ Uniform (0 , 1) f Y ( y ) = I (0 < y < 1) F Y ( y ) = yI (0 < y < 1) + I ( y ≥ 1) n ! ( n − 1)! f Y ( y ) [1 − F Y ( y )] n − 1 I (0 < y < 1) f Y (1) ( y ) = n (1 − y ) n − 1 I (0 < y < 1) =

  67. . Summary January 29th, 2013 Biostatistics 602 - Lecture 07 Hyun Min Kang n E Y . Y 18 / 21 . . . . . . . . . . . Complete Statistics . . . . Basu’s Theorem . . . . . . . . . Obtaining E [ Y (1) ] ∼ Uniform (0 , 1) f Y ( y ) = I (0 < y < 1) F Y ( y ) = yI (0 < y < 1) + I ( y ≥ 1) n ! ( n − 1)! f Y ( y ) [1 − F Y ( y )] n − 1 I (0 < y < 1) f Y (1) ( y ) = n (1 − y ) n − 1 I (0 < y < 1) = ∼ Beta (1 , n ) Y (1)

  68. . . January 29th, 2013 Biostatistics 602 - Lecture 07 Hyun Min Kang . Y Summary 18 / 21 Basu’s Theorem Complete Statistics . . . . . . . . . . . . . . . . . . . . . . . Obtaining E [ Y (1) ] ∼ Uniform (0 , 1) f Y ( y ) = I (0 < y < 1) F Y ( y ) = yI (0 < y < 1) + I ( y ≥ 1) n ! ( n − 1)! f Y ( y ) [1 − F Y ( y )] n − 1 I (0 < y < 1) f Y (1) ( y ) = n (1 − y ) n − 1 I (0 < y < 1) = ∼ Beta (1 , n ) Y (1) 1 E [ Y (1) ] = n + 1

  69. f Y y F Y y f Y n y f Y y F Y y Y n E Y n X n E Y n E Y I n January 29th, 2013 I y ny n Biostatistics 602 - Lecture 07 Hyun Min Kang y n Beta n n n Therefore, E X . n n . . . . . . . . . . . . . . . Complete Statistics Basu’s Theorem . Summary Y I y yI y I y 19 / 21 . . . . . . . . . Obtaining E [ Y ( n ) ] ∼ Uniform (0 , 1)

  70. F Y y f Y n y f Y y F Y y Y n E Y n X n E Y n n I y ny n I y . Beta n n Therefore, E X E Y n Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 n n n Summary . . . . . . . . . . . . . . Complete Statistics Basu’s Theorem . 19 / 21 . Y yI y I y . . . . . . . . . Obtaining E [ Y ( n ) ] ∼ Uniform (0 , 1) f Y ( y ) = I (0 < y < 1)

  71. f Y n y f Y y F Y y Y n E Y n X n E Y n n I y ny n I y . Beta n n Therefore, E X E Y n Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 n n . Summary . . . . . . . . . . . . . . Complete Statistics Basu’s Theorem . 19 / 21 n Y . . . . . . . . . Obtaining E [ Y ( n ) ] ∼ Uniform (0 , 1) f Y ( y ) = I (0 < y < 1) F Y ( y ) = yI (0 < y < 1) + I ( y ≥ 1)

  72. Y n E Y n X n E Y n . n I y Beta n n X Therefore, E . E Y n Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 ny n 19 / 21 Complete Statistics Y . . . Basu’s Theorem . Summary . . . . . . . . . . . . . . . . . . . . Obtaining E [ Y ( n ) ] ∼ Uniform (0 , 1) f Y ( y ) = I (0 < y < 1) F Y ( y ) = yI (0 < y < 1) + I ( y ≥ 1) n ! ( n − 1)! f Y ( y ) [ F Y ( y )] n − 1 I (0 < y < 1) f Y ( n ) ( y ) =

  73. Y n E Y n X n E Y n . . January 29th, 2013 Biostatistics 602 - Lecture 07 Hyun Min Kang n E Y X Therefore, E n n Beta n 19 / 21 Y Summary . . . . . . . . . . . . . . Complete Statistics Basu’s Theorem . . . . . . . . . . Obtaining E [ Y ( n ) ] ∼ Uniform (0 , 1) f Y ( y ) = I (0 < y < 1) F Y ( y ) = yI (0 < y < 1) + I ( y ≥ 1) n ! ( n − 1)! f Y ( y ) [ F Y ( y )] n − 1 I (0 < y < 1) f Y ( n ) ( y ) = ny n − 1 I (0 < y < 1) =

  74. E Y n X n E Y n . . January 29th, 2013 Biostatistics 602 - Lecture 07 Hyun Min Kang n E Y X Therefore, E n n 19 / 21 . Complete Statistics Basu’s Theorem . Summary Y . . . . . . . . . . . . . . . . . . . . . . Obtaining E [ Y ( n ) ] ∼ Uniform (0 , 1) f Y ( y ) = I (0 < y < 1) F Y ( y ) = yI (0 < y < 1) + I ( y ≥ 1) n ! ( n − 1)! f Y ( y ) [ F Y ( y )] n − 1 I (0 < y < 1) f Y ( n ) ( y ) = ny n − 1 I (0 < y < 1) = ∼ Beta ( n , 1) Y ( n )

  75. . Summary January 29th, 2013 Biostatistics 602 - Lecture 07 Hyun Min Kang n Therefore, E n . Y 19 / 21 . Complete Statistics . . . . . . . . . . . . . . Basu’s Theorem . . . . . . . . . Obtaining E [ Y ( n ) ] ∼ Uniform (0 , 1) f Y ( y ) = I (0 < y < 1) F Y ( y ) = yI (0 < y < 1) + I ( y ≥ 1) n ! ( n − 1)! f Y ( y ) [ F Y ( y )] n − 1 I (0 < y < 1) f Y ( n ) ( y ) = ny n − 1 I (0 < y < 1) = ∼ Beta ( n , 1) Y ( n ) E [ Y ( n ) ] = n + 1 [ X (1) ] E [ Y (1) ] E [ Y ( n ) ] = 1 = X ( n )

  76. f Y y F Y y F Y y f Y y F Y y y n X n E Y n E Y n y I E Y Y Beta n n n y Therefore, E n X X E Y Y E Y E Y n Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 y . I . . . . . . . . . . . . . . . Complete Statistics Basu’s Theorem . Summary Y 20 / 21 I y yI y I y f Y y n n n . . . . . . . . . Obtaining E [ Y (2) ] ∼ Uniform (0 , 1)

  77. F Y y F Y y f Y y F Y y y n X n E Y n E Y n n y n n y I y Y Beta Therefore, E E Y n X X E Y Y E Y E Y n Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 I . . n . . . . . . . . . . . . . . Complete Statistics Basu’s Theorem . Summary Y 20 / 21 yI y I y f Y y n n . . . . . . . . . Obtaining E [ Y (2) ] ∼ Uniform (0 , 1) f Y ( y ) = I (0 < y < 1)

  78. F Y y f Y y F Y y y n X n E Y n E Y n E Y y n n y I y Y Beta n X n Therefore, E X E Y Y E Y E Y n Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 I . . n . . . . . . . . . . . . . . Complete Statistics Basu’s Theorem . Summary Y 20 / 21 y f Y n n . . . . . . . . . Obtaining E [ Y (2) ] ∼ Uniform (0 , 1) f Y ( y ) = I (0 < y < 1) F Y ( y ) = yI (0 < y < 1) + I ( y ≥ 1)

  79. y n X n E Y n E Y n X I y Y Beta n E Y n Therefore, E . X n n E Y Y E Y E Y n Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 y 20 / 21 . Summary . . . . . . . . . . . . . . Complete Statistics Basu’s Theorem . Y . . . . . . . . . Obtaining E [ Y (2) ] ∼ Uniform (0 , 1) f Y ( y ) = I (0 < y < 1) F Y ( y ) = yI (0 < y < 1) + I ( y ≥ 1) n ! ( n − 2)! [1 − F Y ( y )] n − 2 f Y ( y ) [ F Y ( y )] I (0 < y < 1) f Y (2) ( y ) =

  80. X n E Y n E Y n . Beta n E Y n Therefore, E X X Y E Y . E Y E Y n Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 Y 20 / 21 Y . . . . . . . . . . Basu’s Theorem . Summary . Complete Statistics . . . . . . . . . . . . Obtaining E [ Y (2) ] ∼ Uniform (0 , 1) f Y ( y ) = I (0 < y < 1) F Y ( y ) = yI (0 < y < 1) + I ( y ≥ 1) n ! ( n − 2)! [1 − F Y ( y )] n − 2 f Y ( y ) [ F Y ( y )] I (0 < y < 1) f Y (2) ( y ) = n ( n − 1) y (1 − y ) n − 2 I (0 < y < 1) =

  81. X n E Y n E Y n Y n Therefore, E X X E Y . . E Y E Y n Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 E Y 20 / 21 Y . . . . . . . . . . Summary . Basu’s Theorem Complete Statistics . . . . . . . . . . . . . Obtaining E [ Y (2) ] ∼ Uniform (0 , 1) f Y ( y ) = I (0 < y < 1) F Y ( y ) = yI (0 < y < 1) + I ( y ≥ 1) n ! ( n − 2)! [1 − F Y ( y )] n − 2 f Y ( y ) [ F Y ( y )] I (0 < y < 1) f Y (2) ( y ) = n ( n − 1) y (1 − y ) n − 2 I (0 < y < 1) = ∼ Beta (2 , n − 1) Y (2)

  82. X n E Y n E Y n . . January 29th, 2013 Biostatistics 602 - Lecture 07 Hyun Min Kang n E Y E Y Y E Y X X Therefore, E 20 / 21 Y . Summary . Basu’s Theorem Complete Statistics . . . . . . . . . . . . . . . . . . . . . . Obtaining E [ Y (2) ] ∼ Uniform (0 , 1) f Y ( y ) = I (0 < y < 1) F Y ( y ) = yI (0 < y < 1) + I ( y ≥ 1) n ! ( n − 2)! [1 − F Y ( y )] n − 2 f Y ( y ) [ F Y ( y )] I (0 < y < 1) f Y (2) ( y ) = n ( n − 1) y (1 − y ) n − 2 I (0 < y < 1) = ∼ Beta (2 , n − 1) Y (2) 2 E [ Y (2) ] = n + 1

  83. . Summary January 29th, 2013 Biostatistics 602 - Lecture 07 Hyun Min Kang n Therefore, E . Y 20 / 21 . Basu’s Theorem . . Complete Statistics . . . . . . . . . . . . . . . . . . . . . Obtaining E [ Y (2) ] ∼ Uniform (0 , 1) f Y ( y ) = I (0 < y < 1) F Y ( y ) = yI (0 < y < 1) + I ( y ≥ 1) n ! ( n − 2)! [1 − F Y ( y )] n − 2 f Y ( y ) [ F Y ( y )] I (0 < y < 1) f Y (2) ( y ) = n ( n − 1) y (1 − y ) n − 2 I (0 < y < 1) = ∼ Beta (2 , n − 1) Y (2) 2 E [ Y (2) ] = n + 1 [ X (1) + X (2) ] E [ Y (1) + Y (2) ] E [ Y (1) ]+ E [ Y (2) ] = 3 = = E [ Y ( n ) ] E [ Y ( n ) ] X ( n )

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend