evaluating methods for setting catch limits for gag
play

Evaluating methods for setting catch limits for gag grouper: data- - PowerPoint PPT Presentation

Evaluating methods for setting catch limits for gag grouper: data- rich versus data-limited Skyler R. Sagarese 1,2 , John F. Walter III 2 , Meaghan D. Bryan 2 , and Thomas R. Carruthers 3 1 Cooperative Institute for Marine and Atmospheric Studies,


  1. Evaluating methods for setting catch limits for gag grouper: data- rich versus data-limited Skyler R. Sagarese 1,2 , John F. Walter III 2 , Meaghan D. Bryan 2 , and Thomas R. Carruthers 3 1 Cooperative Institute for Marine and Atmospheric Studies, RSMAS, Univ. of Miami; 2 Southeast Fisheries Science Center; 3 Univ. of British Columbia 30 th Lowell Wakefield Fisheries Symposium May 13, 2015 Anchorage, Alaska

  2. Outline • Brief introduction • Stock assessments in the southeast US • Study species: shallow-water groupers • Objective • Methods • Data-rich • Data-limited • Results • Applicability to data-limited grouper stocks

  3. Biodiversity in the southeast US • High biodiversity Table 1 from Fautin et al. (2010) Image : http://www.nmfs.noaa.gov /sfa / management/councils/ Reference : Fautin, D., P. Dalton, L.S. Incze, J.-A.C. Leong, C. Pautzke, A. Rosenberg, P. Sandifer, G. Sedberry, J.W. Tunnell Jr, and I. Abbott. 2010. An overview of marine biodiversity in United States waters. PLoS One 5:e11914. 10.1371/ journal.pone.0011914

  4. Biodiversity in the southeast US • High biodiversity Table 1 from Fautin et al. (2010) Image : http://www.nmfs.noaa.gov /sfa / management/councils/ Reference : Fautin, D., P. Dalton, L.S. Incze, J.-A.C. Leong, C. Pautzke, A. Rosenberg, P. Sandifer, G. Sedberry, J.W. Tunnell Jr, and I. Abbott. 2010. An overview of marine biodiversity in United States waters. PLoS One 5:e11914. 10.1371/ journal.pone.0011914

  5. Biodiversity in the southeast US • High biodiversity Table 1 from Fautin et al. (2010) Image : http://www.nmfs.noaa.gov /sfa / management/councils/ Reference : Fautin, D., P. Dalton, L.S. Incze, J.-A.C. Leong, C. Pautzke, A. Rosenberg, P. Sandifer, G. Sedberry, J.W. Tunnell Jr, and I. Abbott. 2010. An overview of marine biodiversity in United States waters. PLoS One 5:e11914. 10.1371/ journal.pone.0011914

  6. Biodiversity in the southeast US • High biodiversity Table 1 from Fautin et al. (2010) Image : http://www.nmfs.noaa.gov /sfa / management/councils/ Reference : Fautin, D., P. Dalton, L.S. Incze, J.-A.C. Leong, C. Pautzke, A. Rosenberg, P. Sandifer, G. Sedberry, J.W. Tunnell Jr, and I. Abbott. 2010. An overview of marine biodiversity in United States waters. PLoS One 5:e11914. 10.1371/ journal.pone.0011914

  7. Assessments in the southeast US • Most OFLs/ABCs set using data-poor methods (Newman et al. 2015) • GOM – 74% • South Atlantic – 77% • Caribbean – 100% • Atlantic HMS – 92% • OFLs are set with only minor scientific input

  8. Shallow-water groupers (SWG) • Managed Complex Species Model as a Shallow-water gag Mycteroperca microlepis Integrated analysis species black M. bonaci Catch-at-age complex scamp M. phenax − yellowfin M. venenosa − • Assessed yellowmouth M. interstitialis − on a red Epinephelus morio Integrated analysis species red hind E. guttatus Data-limited basis rock hind E. adscensionis − Goliath E. itajara Catch-Free Nassau E. striatus − Images: http://safmc.net/fish-id-and-regs/regulations-species

  9. SWG landings Red Grouper Gag Black Grouper Scamp Other SWG 5000 4000 Landings (t) 3000 2000 1000 0 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1998 1999 2000 2001 2002 2003 2004 2005 2006 2008 2009 2010 2011 2012 2013 1997 2007 Data source : http://www.st.nmfs.noaa.gov/commercial-fisheries/commercial-landings/annual-landings/

  10. Objective Figure : Data inputs from Stock Synthesis model • Could we have achieved a similar assessment result for GOM gag with less data or with computationally less-intensive methods on aggregated data?

  11. Methods – Stock Synthesis “data-rich” • Integrated analysis (Wetzel and Methot 2013) 1. Population sub-model Statistical catch-at-age model • 2. Observational sub-model Uses a wide range of data types to calibrate model • 3. Statistical sub-model Quantifies the goodness of fit statistic between • values expected and observed • Highly flexible model structure SS3 freely available at: http://nft.nefsc.noaa.gov/Stock_Synthesis_3.htm

  12. Methods – data-limited (DLM) • ‘DLMtool’ package in R (Carruthers et al. 2014) Method / Management Procedure Harvest Control Rules or Extensions Tested Catch Scalars - Geromont-Butterworth (GB) Constant catch, CPUE gradient rule Simple Bluefin Tuna (SBT1) - Depletion Fratio (DepF) - Depletion-Based Stock Reduction 40% depletion, 40-10, Mean Length Estimation Analysis (DBSRA) (ML) Depletion-Corrected Average Catch 40% depletion, 40-10, ML (DCAC) F MSY to M ratio (Fratio) 40% depletion, 40-10, ML Beddington and Kirkwood Life-History CC (Catch Curve Estimation), ML Analysis (BK) Delay-Difference (DD) 40-10 Demographic FMSY (Fdem) CC, ML Surplus Production MSY (SPMSY) - Surplus Production Stock Reduction ML Analysis (SPSRA) Yield Per Recruit (YPR) CC, ML ‘DLMtool’ available from: http://cran.r-project.org/web/packages/DLMtool/index.html

  13. Model evaluation • Compared OFL distributions between SS (“truth”) and DLMs using relative absolute error (RAE) (Dick and MacCall 2011) : 𝑆𝐵𝐹 = ¡ ​|𝑛𝑓𝑒𝑗𝑏𝑜(𝑃𝐺𝑀) − ¡ ​𝑃𝐺𝑀↓𝑏𝑡𝑡𝑓𝑡𝑡𝑛𝑓𝑜𝑢 |/​𝑃𝐺𝑀↓𝑏𝑡𝑡𝑓𝑡𝑡𝑛𝑓𝑜𝑢 • Sensitivity analysis to determine which data inputs strongly influence quota recommendations

  14. Management strategy evaluation • Explored the relative performance among potentially applicable DLM for gag grouper • Simulations: 200 • Repetitions: 100 • Duration: 30 years • Assessment interval: 5 years • Compared trade-offs between probability of overfishing, yield, and probability of the biomass dropping below B MSY

  15. Results – quota comparison with SS SS: 3,192 t ± 204 SD Overfishing Limit (OFL, t) Methods Min Median Max RAE GB_slope 2,164 3,060 3,246 0.04 DCAC_ML 1,148 2,950 17,504 0.08 Fdem_ML 293 2,854 22,205 0.11 SPSRA 453 3,565 1,439,942 0.12

  16. Data Inputs Results - Sensitivity BMSY_B0 FMSY_M MaxAge vbLinf steep Abun Mort vbt0 AvC LFC LFS CAA CAL Cref Bref Dep vbK AM wla wlb Cat Ind Dt Method AverC X • OFL quotas MCTen MCThree GB_CC X X • Sensitive to: GB_slope X X SBT1 X DepF X X X X • Natural mortality X X X X X DBSRA 40 X X X X • Catch 4010 X X X X ML X X X X • Abundance DCAC X X X X X 40 X X X X 4010 X X X X X • Depletion ML X X X X X X Fratio X X X • Steepness X X X CC 4010 X X X X ML X X X X X • Insensitive to: BK X X X CC X X X X ML X X X X X • Von Bertalanffy t0 DD X X X X 4010 X X X X X Fdem X X X X • Von Bertalanffy Linf X X X X X CC ML X X X X X X • Weight length a SPMSY X SPSRA X X X X ML X X YPR X X X X X CC X X X X ML - - - - - - - - - -

  17. Results - MSE Probability of overfishing (POF) • Best performance: • Depletion Fratio, Fratio4010 • < 20% POF • Intermediate yield (55 – 60 t) • SS-matching methods: B < B MSY • SPSRA • < 40% of biomass dropping below B MSY • Intermediate yield (~50 t) • GB_slope • Low yield

  18. Results - MSE Probability of overfishing (POF) • Best performance: • Depletion Fratio, Fratio4010 • < 20% POF • Intermediate yield (55 – 60 t) • SS-matching methods: B < B MSY • SPSRA • < 40% of biomass dropping below B MSY • Intermediate yield (~50 t) • GB_slope • Low yield

  19. Summary • Most DLMs provide lower estimates of OFL compared to SS • Due to dome-shaped selectivity and “cryptic” biomass • DLMs assume asymptotic selectivity • Expect higher F • Could lead to precautionary advice

  20. Summary • Quota recommendations influenced by data inputs • M, steepness, catch, current abundance, depletion • Setting management objectives • Sexes combined versus female only SSB models • DLM methods appear to produce similar results to sexes combined SS model • Methods producing results similar to SS: • DCAC_ML, Fdem_ML, GB_slope, SPSRA

  21. Applicability to other SWG • Use depletion estimates for gag • “Robin Hood” approach (Punt et al. 2011) • DCAC_ML and Fdem_ML • If catch-at-length data is available • Easy to collect • Estimate F, can estimate current abundance or depletion • Importance of selectivity • Way to scale OFL based on degree of doming in selectivity?

  22. Acknowledgments • Assessment analysts • J. Tetzlaff, A. Rios, S. Cass-Calay, C. Porch, M. Schirripa, M. Karnauskas, N. Cummings • Fisheries Statistics & Sustainable Fisheries Divisions • SEDAR participants • Funding: Gulf of Mexico IFQ cost-recovery program

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend