d
play

d Limits at infinity and infinite limits i E 2 Lectures a l l - PowerPoint PPT Presentation

Section 2.6 d Limits at infinity and infinite limits i E 2 Lectures a l l u d b Dr. Abdulla Eid A . College of Science r D MATHS 101: Calculus I Dr. Abdulla Eid (University of Bahrain) Infinite Limits 1 / 29 d 1 Finite limits


  1. Section 2.6 d Limits at infinity and infinite limits i E 2 Lectures a l l u d b Dr. Abdulla Eid A . College of Science r D MATHS 101: Calculus I Dr. Abdulla Eid (University of Bahrain) Infinite Limits 1 / 29

  2. d 1 Finite limits as x → ± ∞ . i E 2 Horizontal Asympotes. a l l 3 Infinite limits. u d 4 Vertical Asymptotes. b A . r D Dr. Abdulla Eid (University of Bahrain) Infinite Limits 2 / 29

  3. Motivation Example Consider the function f ( x ) = 1 x . The graph of the function is y d i E a x l l u d b A . r D Question: What happen if x is sufficiently large number (i.e., x approaches ∞ ) ? In other words, what is lim x → ∞ 1 x ? From the graph we can easily see that 1 1 lim x = 0 and lim x = 0 x → ∞ x →− ∞ Dr. Abdulla Eid (University of Bahrain) Infinite Limits 3 / 29

  4. Continue... Arithmetic at infinity: d i E ∞ + ∞ = ∞ . 1 a 2 k · ∞ = ∞ ( k > 0). l l u 3 k · ∞ = − ∞ ( k < 0). d b 1 ± ∞ = 0. A 4 ∞ ∞ = ? . (Calculus 1). 5 . r ∞ − ∞ = ? , 0 · ∞ = ? , 1 ∞ = ? . (Calculus 2) D 6 Dr. Abdulla Eid (University of Bahrain) Infinite Limits 4 / 29

  5. Finding the limit of a rational function d f ( x ) i To find the limit lim x →± ∞ g ( x ) , we have E 1 Substitute directly by x = ± ∞ in f ( x ) a g ( x ) . If you get a real number or l l u ± ∞ , then that is the limit. d 2 If you get undefined values such as 0 b 0 or ∞ ∞ , we take the highest power A of x in the numerator and the highest power of x in the denominator . as common factor and we proceed. r D Dr. Abdulla Eid (University of Bahrain) Infinite Limits 5 / 29

  6. Example 1 Find 3 x 2 − x − 2 lim 5 x 2 + 4 x + 1 x → ∞ Solution: Direct substitution gives d i 3 ( ∞ ) 2 − ( ∞ ) − 2 E undefined! 5 ( ∞ ) 2 + 4 ( ∞ ) + 1 a l l u 3 x 2 − x − 2 d 3 x 2 − x − 2 b 5 x 2 + 4 x + 1 = lim lim 5 x 2 + 4 x + 1 A x → ∞ x → ∞ x 2 � 3 − 1 x − 2 � . x 2 r = lim D 5 + 4 x + 1 x 2 � � x → ∞ x 2 3 − 1 x − 2 � � x 2 = lim 5 + 4 x + 1 � � x → ∞ x 2 = ( 3 − 0 − 0 ) ( 5 + 0 + 0 ) = 3 5 Dr. Abdulla Eid (University of Bahrain) Infinite Limits 6 / 29

  7. Exercise 2 Find 5 x 2 − 2 x + 1 lim 9 x 2 x → ∞ d i E a l l u d b A . r D Dr. Abdulla Eid (University of Bahrain) Infinite Limits 7 / 29

  8. Example 3 Find 3 x + 7 lim x 2 − 2 x → ∞ Solution: Direct substitution gives d i 3 ∞ + 7 E ( ∞ ) 2 − 2 = ∞ undefined! a ∞ l l u 3 x + 7 3 x + 7 d x 2 − 2 = lim lim b x 2 − 2 x → ∞ x → ∞ A 3 + 7 � � x x = lim . r 1 − 2 x 2 � � x → ∞ D x 2 3 + 7 � � x = lim 1 − 2 � � x → ∞ x x 2 ( 3 + 0 ) = ∞ ( 1 − 0 ) = 0 Dr. Abdulla Eid (University of Bahrain) Infinite Limits 8 / 29

  9. Example 4 Find x 3 − 8 lim 2 x 2 + 1 x → ∞ Solution: Direct substitution gives d i E ( ∞ ) 3 − 8 2 ( ∞ ) 2 + 1 = ∞ undefined! a l ∞ l u d b x 3 − 8 x 3 − 8 A lim 2 x 2 + 1 = lim 2 x 2 + 1 x → ∞ x → ∞ . r x 3 � 1 − 8 � D x 3 = lim 2 + 1 x 2 � � x → ∞ x 2 1 − 8 � � x x 3 = lim 2 + 1 � � x → ∞ x 2 = ∞ Dr. Abdulla Eid (University of Bahrain) Infinite Limits 9 / 29

  10. Exercise 5 Find 5 x 3 − 2 x + 1 lim 9 x 8 + 8 x → ∞ d i E a l l u d b A . r D Dr. Abdulla Eid (University of Bahrain) Infinite Limits 10 / 29

  11. Example 6 Find √ 3 x 2 + 1 lim 3 x − 5 x → ∞ Solution: Direct substitution gives d i E 3 ( ∞ ) 2 + 1 � = ∞ lim undefined! a 3 ( ∞ ) − 5 x → ∞ l ∞ l u √ √ d 3 x 2 + 1 3 x 2 + 1 b lim = lim A 3 x − 5 3 x − 5 x → ∞ x → ∞ √ . � �� 3 + 1 3 + 1 x 2 � � x 2 � r D x 2 x 2 = lim = lim 3 − 5 3 − 5 � � � � x → ∞ x → ∞ x x x x �� �� 3 + 1 3 + 1 � � | x | x x 2 x 2 = lim = lim 3 − 5 3 − 5 � � � � x → ∞ x x → ∞ x x x √ �� 3 + 1 � 3 x 2 = lim = Dr. Abdulla Eid (University of Bahrain) 3 − 5 � Infinite Limits 11 / 29 � 3 x → ∞

  12. Exercise 7 Find √ 3 x 2 + 1 lim 3 x − 5 x →− ∞ Solution: Direct substitution gives d i 3 ( − ∞ ) 2 + 1 E � ∞ lim = undefined! a 3 ( − ∞ ) − 5 − ∞ x →− ∞ l l u √ √ d 3 x 2 + 1 3 x 2 + 1 b lim = lim A 3 x − 5 3 x − 5 x →− ∞ x → ∞ √ � �� . 3 + 1 3 + 1 x 2 � � x 2 � r D x 2 x 2 = lim = lim 3 − 5 3 − 5 � � � � x →− ∞ x x →− ∞ x x x �� �� 3 + 1 3 + 1 | x | � − x � x 2 x 2 = = lim lim 3 − 5 3 − 5 � � � � x →− ∞ x x →− ∞ x x x √ �� 3 + 1 � − = − 3 x 2 = lim 3 − 5 Dr. Abdulla Eid (University of Bahrain) � Infinite Limits � 12 / 29 3 x →− ∞ x

  13. Multiplying by the conjugate Example 8 Find �� � x 2 + 1 − x lim x → ∞ d i E Solution: Direct substitution gives a �� � l ( ∞ ) 2 + 1 − x l = ∞ − ∞ undefined! u d b A � √ � x 2 + 1 + x . �� � �� � x 2 + 1 − x x 2 + 1 − x r = lim · lim x → ∞ lim � √ D � x → ∞ x → ∞ x 2 + 1 + x x 2 + 1 − x 2 1 = lim � = lim � √ � √ � x → ∞ x 2 + 1 + x x → ∞ x 2 + 1 + x = 0 Dr. Abdulla Eid (University of Bahrain) Infinite Limits 13 / 29

  14. Exercise 9 Find � � � x 2 + 16 lim x − x → ∞ d i E a l l u d b A . r D Dr. Abdulla Eid (University of Bahrain) Infinite Limits 14 / 29

  15. 2 - Horizontal Asymptotes Motivational Example: Consider the function f ( x ) = x 2 − 1 x 2 + 1 . Then we have x → ∞ f ( x ) = 1 lim and x → ∞ f ( x ) = 1 lim d i E In this case, the line y = 1 is called a horizontal asymptote . a l l y u d b A . r D x Dr. Abdulla Eid (University of Bahrain) Infinite Limits 15 / 29

  16. Definition 10 The line y = L is called a horizontal asymptote of the curve y = f ( x ) if either d i E x → ∞ f ( x ) = L lim and x →− ∞ f ( x ) = L lim a l l u Example 11 d b Find the horizontal asymptote of the function A x − 9 . r f ( x ) = √ D 4 x 2 + 3 x + 2 we need to find both lim x → ∞ f ( x ) and lim x →− ∞ f ( x ) Dr. Abdulla Eid (University of Bahrain) Infinite Limits 16 / 29

  17. x − 9 x − 9 lim √ = lim √ 4 x 2 + 3 x + 2 3 x 2 + 3 x + 1 x → ∞ x → ∞ 1 − 9 1 − 9 � � � � x x x x = lim � = lim √ � �� x → ∞ x → ∞ 4 + 3 x + 2 4 + 3 x + 2 x 2 � x 2 � d x 2 x 2 i E 1 − 9 1 − 9 � � � � x x x x = lim � = lim a �� �� x → ∞ x → ∞ 4 + 3 l x + 2 4 + 3 x + 2 � | x | x l u x 2 x 2 d 1 − 9 � � � = 1 b x = lim A �� 2 x → ∞ 4 + 3 x + 2 x 2 . r D Hence y = 1 2 is a horizontal asymptote. Now we compute lim x →− ∞ f ( x ) 2 and so we have y = − 1 to get lim x →− ∞ f ( x ) = − 1 is also a horizontal 2 asymptote. Dr. Abdulla Eid (University of Bahrain) Infinite Limits 17 / 29

  18. Motivation Example Consider the function f ( x ) = 1 x . The graph of the function is y d i E a x l l u d b A . r D Question: What is lim x → 0 + 1 x and lim x → 0 − 1 x ? From the graph we can easily see that � 1 � 1 1 � 1 � x = ∞ 0 + = ∞ x = ∞ 0 + = ∞ lim and lim x → 0 + x → 0 − Dr. Abdulla Eid (University of Bahrain) Infinite Limits 18 / 29

  19. Example 12 Find 3 lim x − 1 d x → 1 + i E Solution: Direct substitution gives a l l 3 u undefined! d 0 b A So we need to find whether it is 0 + or 0 − . . r D x − 1 = 3 3 lim 0 + x → 1 + = ∞ Dr. Abdulla Eid (University of Bahrain) Infinite Limits 19 / 29

  20. Exercise 13 Find 3 lim x − 1 d x → 1 − i E Solution: Direct substitution gives a l l 3 u undefined! d 0 b A So we need to find whether it is 0 + or 0 − . . r D x − 1 = 3 3 lim 0 − x → 1 − = − ∞ Dr. Abdulla Eid (University of Bahrain) Infinite Limits 20 / 29

  21. Example 14 Find − 2 lim x + 1 x →− 1 + d i E Solution: Direct substitution gives a l − 2 l u undefined! 0 d b So we need to find whether it is 0 + or 0 − . A . x + 1 = − 2 − 2 r D lim 0 + x →− 1 + = − 2 · ∞ = − ∞ Dr. Abdulla Eid (University of Bahrain) Infinite Limits 21 / 29

  22. Exercise 15 Find 3 lim 2 − x d x → 2 + i E Solution: Direct substitution gives a l l 3 u undefined! d 0 b A So we need to find whether it is 0 + or 0 − . . r D 2 − x = 3 3 lim 0 − x → 2 + = − ∞ Dr. Abdulla Eid (University of Bahrain) Infinite Limits 22 / 29

  23. Example 16 Find 2 x lim x 2 − 16 d x → 4 − i E Solution: Direct substitution gives a l l 8 u undefined! d 0 b A So we need to find whether it is 0 + or 0 − . . r D x 2 − 16 = 8 2 x lim 0 − x → 4 − = − ∞ Dr. Abdulla Eid (University of Bahrain) Infinite Limits 23 / 29

  24. Example 17 Find x − 2 lim x 2 − 4 x + 4 x → 2 + Solution: Direct substitution gives d i E 0 undefined! a 0 l l u d So we need to factor first using the methods of Section 2.2. b A x − 2 ( x − 2 ) 1 lim x 2 − 4 = lim ( x − 2 )( x − 2 ) = lim . x − 2 x → 2 + r x → 2 + x → 2 + D So we need to find whether it is 0 + or 0 − . x − 2 = 1 1 lim 0 + x → 2 + = ∞ Dr. Abdulla Eid (University of Bahrain) Infinite Limits 24 / 29

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend