on displacement damage in tungsten
play

on displacement damage in tungsten T. Schwarz-Selinger 1 , J. Bauer 1 - PowerPoint PPT Presentation

Influence of the presence of deuterium on displacement damage in tungsten T. Schwarz-Selinger 1 , J. Bauer 1 , S. Elgeti 1 M. Pe ovnik 2 , S. Markelj 2 1 2 Theoretical predictions - DFT molecular dynamics revealed that hydrogen clusters


  1. Influence of the presence of deuterium on displacement damage in tungsten T. Schwarz-Selinger 1 , J. Bauer 1 , S. Elgeti 1 M. Pe čovnik 2 , S. Markelj 2 1 2

  2. Theoretical predictions - ‘ DFT molecular dynamics revealed that hydrogen clusters can prevent a vacancy from recombining with the neighboring crowdion-type self-interstitial- atom.’ D. K Kato o et al., Nuc ucl. Fus Fusion on 55 55 (2 (201 015) 5) 08 0830 3019 19 - ‘ Atomic scale computer simulations have predicted a decrease in the W vacancy formation energy in the presence of H … Findings of this work suggest that H not only promotes vacancy formation in W, but once formed the vacancy will also initiate further H clustering ’ 270 S.C. Midd ddlebur urgh gh, J. Nuc ucl. M Mater. 44 448 8 (2 (201 014) 4) 270 Thomas Schwarz-Selinger et al. | mod-pmi 2019 | NIFS | June 20, 2019 | Page 2

  3. Motivation In a future fusion reactor: In present day lab experiments: 14 MeV n 20 MeV W D plasma + D-T plasma D D D D D D D T D T T D bulk W  mutual influence of D on damage creation/evolution? Thomas Schwarz-Selinger et al. | mod-pmi 2019 | NIFS | June 20, 2019 | Page 3

  4. Experimental strategy Shown before by Sabina: 10.8 MeV W sequentially or simultaneously + additional D decoration D D D D D Thomas Schwarz-Selinger et al. | mod-pmi 2019 | NIFS | June 20, 2019 | Page 4

  5. Experimental strategy Approach here: sequential treatment multiple times 20 MeV W D plasma 20 MeV W D plasma + + + … + D/W 1.7 at.% D/W 1.7 at.%? x at.% ? D D D D D D D D D D D D D D D D D D D D D D D D Thomas Schwarz-Selinger et al. | mod-pmi 2019 | NIFS | June 20, 2019 | Page 5

  6. Experimental strategy Compare D retention in • - tungsten free of D - tungsten ‘saturated with D’ after 20 MeV W bombardment and D decoration of defects  Questions to address beforehand:  D uptake as function of W damaging fluence (Does damage saturate?)  D uptake as function of D fluence (How to decorate defects without creating new ones?) Thomas Schwarz-Selinger et al. | mod-pmi 2019 | NIFS | June 20, 2019 | Page 6

  7. Outline Motivation • D retention in self-damaged tungsten • • Multiple sequence experiments: Damage creation D loading D depth profiles and thermal desorption data Present rate equation modelling approaches • Thomas Schwarz-Selinger et al. | mod-pmi 2019 | NIFS | June 20, 2019 | Page 7

  8. A comment before I start High energy and/or high flux D (plasma) exposure leads to • - H oversaturation [L.Gao et al., Nucl. Fusion 2017 https://doi.org/10.1088/0029-5515/57/1/016026] - damage creation (point defects … blisters) which we want to avoid in this study (not trivial, see e.g. S. Kapser et al., Nucl. Fusion, 2018 http://dx.doi.org/10.1088/1741-4326/aab571 ) The strategy here is to investigate the effect of displacement damage, • hence D loading needs to be done without creating new damage Thomas Schwarz-Selinger et al. | mod-pmi 2019 | NIFS | June 20, 2019 | Page 8

  9. D decoration: gentle plasma exposure PlaQ:  known flux and energy - energy : „< 5 eV/D “ ( floating targets) - ion flux: 6 × 10 19 D/(m 2 s) (97% as D 3 + , 2% as D 2 + , 1% as D + ) - atom flux > 10 21 D 0 /(m 2 s) - ion fluence: up to 5·10 24 D/m 2 per day  ’gentle’ loading = ‘decoration’: T = 370 K - no additional defect creation - no defect evolution/annealing)  six samples simultaneously A. Manhard, Plasma Sources Sci. Technol. 20 20 (2011) 015010 Thomas Schwarz-Selinger et al. | mod-pmi 2019 | NIFS | June 20, 2019 | Page 9

  10. The tungsten substrate material confocal scanning laser microscopy • Plansee AG hot-rolled tungsten, purity 99.97 wt.-% • chemo-mechanically polished to mirror finish [1] • annealed at 2000 K for 2 min at p < 5 × 10 -8 mbar to reduce initial defect density • to 2 × 10 12 m/m 3 [2] [1] A. Manhard et al., Pract. Metallogr. 50 (1) (2013) 6 – 15. [2] A. Manhard et al., Pract. Metallorg. 52 (2015) 437. Thomas Schwarz-Selinger et al. | mod-pmi 2019 | NIFS | June 20, 2019 | Page 10

  11. Creating displacement damage: W self-implantation 14 MeV fusion neutrons will cause • - transmutation - gas production - displacement damage (E pka < 200 keV) Here: only displacement damage aspect is studied with W self-implantation • Why tungsten ions? 20 MeV W in W target atoms + no chemical effects + dense cascades + fast: 1 dpa in 1 hour SRIM 2013 projectile - vacancies, vacancy clusters, ≈ µm voids, …. - too high E pka Thomas Schwarz-Selinger et al. | mod-pmi 2019 | NIFS | June 20, 2019 | Page 11

  12. Creating displacement damage: W self-implantation 2.3 μ m J. . Gr Grzonka onka et t al. l., , NI NIMB B Vol ol 340, 40, p. . 27 27 (201 2014) 4) 0.30 SRIM 2013 Calculated displacments (dpa KP ) 20 MeV W 0.25 7.8  10 17 W/m 2 with E dis = 90 eV* 0.20 STEM 0.15 micrograph 0.10 0.05 0.00 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Depth (  m) 300 keV W would reduce information depth to 30 nm : Too little material for • diagnostics (nuclear reaction analysis, thermal desorption spectroscopy) • Cascade splitting makes it still relevant (?) [A. Sand et al. Mater. Res. Lett. 5 (5), 357 – 63 (2017)] Thomas Schwarz-Selinger et al. | mod-pmi 2019 | NIFS | June 20, 2019 | Page 12

  13. Ł. ń D retention in self-damaged W 2.3 μ m calculated displacement damage (a.u.) 0 10 0.23 dpa 0 10 Previous investigation: D atomic fraction (at.%) 0.1 dpa -1 10 0.023 dpa fluence series 20 MeV W 6+ @ 290 K • SRIM -1 10 0.005 dpa D decoration with < 5 eV/D • -2 10 for 72 h (1.5 × 10 25 D/m 2 ) @ 450 K 0.001 dpa -2 10 D/W > 1 at.% @ 0.23 dpa • -3 10 0 dpa -3 10 detection limit 0 1 2 3 4 5 depth (  m) Thomas Schwarz-Selinger et al. | mod-pmi 2019 | NIFS | June 20, 2019 | Page 13

  14. Ł. ń D retention in self-damaged W 10 10 D decoration D atomic fraction (at. %) at 450 K Previous investigation: < 5 eV/D 17 ) Total D amount (10 1 1 fluence series 20 MeV W 6+ @ 290 K • • D decoration with < 5 eV/D TPD 0.1 0.1 for 72 h (1.5 × 10 25 D/m 2 ) @ 450K NRA @ 1.25  m D/W > 1 at.% @ 0.23 dpa • 0.01 0.01 linear increase for < 0.005 dpa • 5E-4 0.005 0.05 0.5 5 peak displacement damage (dpa NRT ) saturation in D for > 0.23 dpa • Thomas Schwarz-Selinger et al. | mod-pmi 2019 | NIFS | June 20, 2019 | Page 14

  15. Ł. ń D retention in self-damaged W 2 0.25 calculated displacement damage (dpa KP ) 25 D/m 2 ]  D [10 2.25 Previous investigation: 0.20 D atomic fraction (at.%) 1.55 A0449, A0454, A0451, 0.23 dpa, PlaQ, floating, 450K 1.45 fluence series 20 MeV W 6+ @ 290 K • 0.40 0.15 0.10 1 • D decoration with < 5 eV/D 0.10 for 72 h (1.5 × 10 25 D/m 2 ) @ 450K 0.05 D/W > 1 at.% @ 0.23 dpa • 0 0.00 linear increase for < 0.005 dpa • 0 1 2 3 4 5 depth (  m) saturation in D for > 0.23 dpa • Thomas Schwarz-Selinger et al. | mod-pmi 2019 | NIFS | June 20, 2019 | Page 15

  16. Ł. ń D retention in self-damaged W 17 D) 2.0 integrated deuterium amount (10 1.5 Previous investigation: fluence series 20 MeV W 6+ @ 290 K • 1.0 • D decoration with < 5 eV/D for 72 h (1.5 × 10 25 D/m 2 ) @ 450K 0.5 D/W > 1 at.% @ 0.23 dpa • 0.0 0 1 2 linear increase for < 0.005 dpa • 25 D/m 2 ) deuterium fluence (10 saturation in D for > 0.23 dpa • Thomas Schwarz-Selinger et al. | mod-pmi 2019 | NIFS | June 20, 2019 | Page 16

  17. Saturating displacement damage with D st D decoration 1 0.4 D atomic fraction (at. %) ** 20MeV 0.23 dpa 2.0 nd D decoration + 2 0.3 1.5 * 1 times / 2 times PlaQ 72h, 370K, floating; This study: damage (dpa KP ) 0.2 SRIM 1.0 D decoration @ 370 K • 2 times 1.5·10 25 D/m 2 (2 x 72 h) • 0.5 0.1 check if damaged zone • is completely filled with D 0.0 0.0 0 1 2 3 4 5 Depth (  m)  It is, up to 1.7 at.% Doubling the D fluence does not increase D amount Thomas Schwarz-Selinger et al. | mod-pmi 2019 | NIFS | June 20, 2019 | Page 17

  18. Ł. ń D retention in self-damaged W beam sweep for laterally • homogenous damage accuracy, reproducibility: • normalized proton integral (a.u.) normalized proton integral (a.u.) 1.2 1.2 better than 5% 1.0 1.0  box like D reservoir D145 0.8 0.8 0 5 10 0 5 10 15 short axis (mm) long axis (mm) Thomas Schwarz-Selinger et al. | mod-pmi 2019 | NIFS | June 20, 2019 | Page 18

  19.  Until IBIS isn’t ready: ‘simultaneous for the poor’ ● ‘Recrystallized W’ – μ ● ≙ ● ≙ ● Displacements during 20 MeV W 1.2 1.2 SDTrimSP calculation: 20 MeV W on W, containing 2 % D • 1.0 fraction of detrapped D 1.0 fraction of displaced W  = 7.87 × 10 17 W 6+ /m 2 • 0.8 0.8 displacement energy • 0.6 0.6 - E displ. W = 90 eV, E cutoff, W = 2.2 eV - E displ, D = 1 eV, E cutoff, D = 0.25 eV 0.4 0.4 0.2 0.2  tungsten atoms are displaced and defects are generated (0.23 dpa) 0.0 0.0 0.0 0.5 1.0 1.5 2.0 2.5  simultaneously, retained deuterium depth [  m] atoms (1.7%!) are de-trapped in the vicinity of the displacement damage: kinetic detrapping Thomas Schwarz-Selinger et al. | mod-pmi 2019 | NIFS | June 20, 2019 | Page 19

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend