dna strand displacement dna strand displacement
play

DNA STRAND DISPLACEMENT DNA STRAND DISPLACEMENT = Adenine = long - PowerPoint PPT Presentation

16 th 1 ENUMERATION, CONDENSATION AND SIMULATION ENUMERATION, CONDENSATION AND SIMULATION OF PSEUDOKNOT-FREE OF PSEUDOKNOT-FREE DOMAIN-LEVEL DNA STRAND DISPLACEMENT SYSTEMS DOMAIN-LEVEL DNA STRAND DISPLACEMENT SYSTEMS Stefan Badelt , Casey


  1. 16 th 1 ENUMERATION, CONDENSATION AND SIMULATION ENUMERATION, CONDENSATION AND SIMULATION OF PSEUDOKNOT-FREE OF PSEUDOKNOT-FREE DOMAIN-LEVEL DNA STRAND DISPLACEMENT SYSTEMS DOMAIN-LEVEL DNA STRAND DISPLACEMENT SYSTEMS Stefan Badelt , Casey Grun, Karthik V. Sarma, Seung Woo Shin, Brian Wolfe, and Erik Winfree DNA and Natural Algorithms (DNA) Group, Caltech FNANO-19 Snowbird, April , 2019 http://www.github.com/DNA-and-Natural-Algorithms-Group/peppercornenumerator

  2. 2 DNA STRAND DISPLACEMENT DNA STRAND DISPLACEMENT = Adenine = long domain = Thymine = short domain = Cytosine = Guanine = 5' end = Phosphate = 3' end backbone DNA DNA b b a* a* b* b*

  3. 3 DOMAIN-LEVEL STRAND DISPLACEMENT DOMAIN-LEVEL STRAND DISPLACEMENT long (branch-migration) domain: binds irreversibly short (toehold) domain: binds reversibly A B x x F1 F2 t b + + a t a x t x t b t* x* t* t* x* t* 3-way branch migration unbind bind x x x a x a t b t t t b t* x* t* t* x* t* a t x x t b i1 i3 t* x* t* i2

  4. 4 DOMAIN-LEVEL STRAND DISPLACEMENT DOMAIN-LEVEL STRAND DISPLACEMENT detailed network long (branch-migration) domain: binds irreversibly condensed network short (toehold) domain: binds reversibly A B x x F1 F2 t b + + a t a x t x t b t* x* t* t* x* t* 3-way branch migration bind unbind x x x a x a t b t t t b t* x* t* t* x* t* a t x x t b i1 i2 t* x* t*

  5. 5 DOMAIN-LEVEL STRAND DISPLACEMENT DOMAIN-LEVEL STRAND DISPLACEMENT detailed network long (branch-migration) domain: binds irreversibly condensed network short (toehold) domain: binds reversibly A B x x F1 F2 t b + + a t a x t x t b t* x* t* t* x* t* 3-way branch migration unbind bind x x x a x a t b t t t b t* x* t* t* x* t* a t x x t b i1 i2 t* x* t*

  6. 6 MANY EXPERIMENTAL DEMONSTRATIONS ... MANY EXPERIMENTAL DEMONSTRATIONS ... 0 1 0 1 Output 1 1 0 0 Input 1 1 1 0 0 1 1 0 A B C D Qian, Winfree, Bruck (2011) Zhang et al. (2007) Cherry & Qian (2018)

  7. 7 w1 v1 v3 i c2 v2 i + v1+ w2 i + w1 c2+ i + w1 c2 + r2 d + v1 d + v2 r2 + v2 r2+ r3 r1 w2 c1 low representation: species value x(0) x(1) high low 0 high v2 + c2 1 x v1 v2 + v3 c1 c2 + c3 c3 r3 5 20 C D hr hr 0 10 30 A 40 1 2 3 4 5 B clk3 r1 v:=0 v > 0? v:=v-1 yes no w:=w+1 v:=w w:=0 clk2 catalyzed by clk2 catalyzed by clk3 clk1 clock made from chemical oscillator: dual rail 4 3 nM where logic y on w +w(1) on w +w(0) on w x(0)+y(1) x 60 30 0 60 30 hr nM thresholding 100 0 0 20 40 60 80 hr (digital circuit) nM nM Oregonator (limit cycle oscillator) Rössler (chaotic) Incrementer state machine (algorithmic) 2-bit pulse counter where catalyzed by clk1 anytime 0 80 100 10 20 0 0 50 20 100 150 200 250 1 2 60 40 0 off z +z(1) z w(0)+w(0) off z w(1)+w(1) on z on z +z(0) on z +z(1) off z +z(0) x(1)+w(1) x(1)+w(0) y(0)+w(1) y(0)+w(0) 10 20 ... MANY MORE POTENTIAL APPLICATIONS. ... MANY MORE POTENTIAL APPLICATIONS. Chemical Reaction Networks (CRNs) Soloveichik et al. (2010) - DNA as a universal substrate for chemical kinetics

  8. 8 DSD IS A KINETIC TOOLBOX DSD IS A KINETIC TOOLBOX ... but how do you model your DSD system? per hand VisualDSD Phillips & Carelli (2009), ..., Sparcassi et al. (2018) other models Kawamata et al. (2012), Mokhtar et al. (2017), ... ? You specify the reaction types. You specify the reaction rates. You may include all(?) types of pseudoknotted conformations, and even non-DSD reactions (e.g. enzyme cleavage reactions). ... so you better know what you are doing.

  9. 9 THERMODYNAMIC ENERGY MODEL THERMODYNAMIC ENERGY MODEL A secondary structure is a list of base pairs, where: A base may participate in at most one base pair Base pairs must not cross (no pseudoknots) Only specific base-pairs (GC, AT, GT) are allowed. a a) A E b d* q* D r d b* o* q b) "dot-bracket" or "dot-parens-plus" notation c e o p a b c b* d e f g h + h* f* i j k l + l* m j* n o p + q + q* o* r d* . ( . ) ( . ( . ( + ) ) . ( . ( + ) . ) . ( . + ( + ) ) . ) f n c) "kernel" notation f* g i a b( c ) d( e f( g h( + ) ) i j( k l( + ) m ) n o( p + q( + ) ) r ) h* j* j B h m k l* l C

  10. 10 DSD IS A KINETIC TOOLBOX ... DSD IS A KINETIC TOOLBOX ... ... that can be rigorously analyzed within the domain of the thermodynamic energy model. The Peppercorn so�ware package: reaction enumeration reaction condensation approximate DNA reaction rate model

  11. 11 bind21 REACTION TYPES & APPROXIMATE RATES 1/2 REACTION TYPES & APPROXIMATE RATES 1/2 r r* ? r ? ? bind11 : r* ? ? r ? ? r + bind21 : + ? ? r* ? ? r* r r* ? r ? open : r* Open reactions only for toeholds with parameter: L , k slow is the only valid bimolecular reaction

  12. 12 REACTION TYPES & APPROXIMATE RATES 2/2 REACTION TYPES & APPROXIMATE RATES 2/2 Figure from Kotani & Hughes (2017) r r* ? r ? r ? r* r r r ? ? ? ? 4-way : ? 3-way-fw : r* r r ? r* r* r* ? ? r r r ? ? r ? 3-way-bw : r* r* ? unimolecular, but may lead to dissociation

  13. 13 WHAT ARE THE CHALLENGES? WHAT ARE THE CHALLENGES? polymerization => timescale separation size of the enumerated network => condensation

  14. 14 POLYMERIZATION POLYMERIZATION a) s1 a b b b → → a a a*b* a*b* s2 a* b* s1–s2 s1–s2 b) a* b* a* → ... b* → → → → b* a* a a b b s1–s2 s1–s2–s1 s1–s2–s1–s2 s1–s2–s1–s2–s1 s1–s2–s1–s2–s1–s2

  15. 15 MODEL PARAMETERS MODEL PARAMETERS negligible reactions slow reactions fast reactions bind21 bimolecular [/M/s] open (len > L) open (len < L) unimolecular [/s] bind11 branch migration rate-independent model: simple, one parameter: L

  16. 16 MODEL PARAMETERS MODEL PARAMETERS negligible reactions slow reactions fast reactions bind21 bimolecular [/M/s] open (len > L) open (len < L) unimolecular [/s] bind11 branch migration unimolecular [/s] rate-independent model: simple, one parameter: L rate-dependent model: flexible, two parameters: k-slow, k-fast

  17. 17 ENUMERATION / CONDENSATION ENUMERATION / CONDENSATION B m A B m* B* C*

  18. 18 ENUMERATION / CONDENSATION ENUMERATION / CONDENSATION B A B m m B m* B* C* A B m* B* C*

  19. 19 ENUMERATION / CONDENSATION ENUMERATION / CONDENSATION A B B A B m m B m* B* C* B m A B B* m* C* m* B* C*

  20. 20 ENUMERATION / CONDENSATION ENUMERATION / CONDENSATION A B B A B m m B m* B* C* B m A B B* m* C* m* B* C*

  21. 21 ENUMERATION / CONDENSATION ENUMERATION / CONDENSATION A B B A B m m B {(P)} {(K)} m* B* C* B m A B B* m* {(K + L), (P+Q)} C* m* B* C* {(Q)} {(L)} A B m B k A B m B m* B* B* m* C* C*

  22. 22 CASE STUDIES: CONDENSED REACTION RATES CASE STUDIES: CONDENSED REACTION RATES a) b) c) x* m* m x A A B m B m B n B k k k m* x* x A n* A B m n B B m B m x x* n* m* B* m* B* m* n* B* m* n* B* x n C* n x* C* C* C*

  23. 23 CASE STUDIES: AUTOCATALYTIC SYSTEM CASE STUDIES: AUTOCATALYTIC SYSTEM Kotani & Hughes (2017)

  24. 24 CASE STUDIES: AUTOCATALYTIC SYSTEM CASE STUDIES: AUTOCATALYTIC SYSTEM Kotani & Hughes (2017)

  25. 25 CASE STUDIES: AUTOCATALYTIC SYSTEM CASE STUDIES: AUTOCATALYTIC SYSTEM # parameters MCS RC + TC DR RM CR 1 release-cutof = 8 10 16 + 159 556 14 15 −3 2 k slow = k fast = 10 16 13 + 82 265 10 11 −4 3 k slow = k fast = 10 10 16 + 164 599 14 15 −4 , k fast = 10 −3 4 k slow = 10 16 20 + 164 488 17 22 −4 , k fast = 10 −2 5 k slow = 10 24 55 + 1426 6628 28 62 −5 , k fast = 10 −2 6 k slow = 10 24 55 + 1426 6652 28 75 INF

  26. 26 CASE STUDIES: SEESAW SYSTEMS CASE STUDIES: SEESAW SYSTEMS Qian & Winfree (2011)

  27. 27 CASE STUDIES: SEESAW SYSTEMS CASE STUDIES: SEESAW SYSTEMS (a) (b) (c) (d)

  28. 28 CASE STUDIES: MANY SYSTEMS CASE STUDIES: MANY SYSTEMS

  29. 29 THANKS TO THANKS TO Erik Winfree Casey Grun Karthik Sarma Seung Woo Shin you Brian Wolfe http://www.github.com/DNA-and-Natural-Algorithms-Group/peppercornenumerator ... don't forget to ask me about kernel notation. This research was funded in parts by: The Caltech Biology and Biological Engineering Division Fellowship. The U.S. National Science Foundation NSF Grant CCF-1213127 and NSF Grant CCF-1317694. The Gordon and Betty Moore Foundation's Programmable Molecular Technology Initiative (PMTI).

  30. 30 CASE STUDIES: REACTION COMPLETION CASE STUDIES: REACTION COMPLETION d) b b b m a m b a b b m a n b* a* b* n a* b* n a*

  31. 31 t* T* Th 2,5:5 T* S5* T* c* c* c* c* t* S5 Th 2,5:5 c c S5* s2* T* c* c* c* t* shorthand notation explicit notation s2* S5 S5* G 5:5,6 S5 c c c c t T S6 = G 5:5,6 = S5 S6 S5* T* T* T CASE STUDIES: SEESAW SYSTEMS CASE STUDIES: SEESAW SYSTEMS ACTTCAAACCACCACTCTAC ACTTCAAACCACCACTCTAC TGAGATGAAGTTTGGTGGTGAGATG TGAGATGAAGTTTGGTGGTGAGATG ACTTCAAACCACCAC ACTTCAAACCACCAC TGTTTTGAGATGAAGTTTGGTGGTG TGTTTTGAGATGAAGTTTGGTGGTG Qian & Winfree (2011) - Supporting Online Material

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend