optimal algorithms for large scale quadratic programming
play

Optimal algorithms for large scale quadratic programming problems - PowerPoint PPT Presentation

Optimal algorithms for large scale quadratic programming problems Zden k DOSTL Department of Applied Mathematics FEI VB-Technical University of Ostrava TU Graz, May 2006 http://www.am.vsb.cz with David Hork, Vt Vondrk, Dalibor


  1. Optimal algorithms for large scale quadratic programming problems Zden ě k DOSTÁL Department of Applied Mathematics FEI VŠB-Technical University of Ostrava TU Graz, May 2006 http://www.am.vsb.cz

  2. with David Horák, Vít Vondrák, Dalibor Lukáš, Marta Domorádová Department of Applied Mathematics FEI VŠB-TU Ostrava P. Avery, C. Farhat Stanford M. Lesoinne UC Boulder

  3. Outline 1. Motivation, optimal algorithms 2. SMALE (semimonotonic augmented Lagrangians) for equality constrained quadratic programming 3. MPRGP-optimal algorithm for bound constrained quadratic programming 4. SMALBE (semimonotonic augmented Lagrangians) for bound and equality constrained quadratic programming 5. Numerical experiments

  4. Motivation: scalable algorithms for PDE Elliptic problems ( ) = − ∈ Ω f u a u u b u u H 1 1 ( , ) ( ), ( ) 2 0 > 2 ≠ = a u u C u u o a u v a v u ( , ) for , ( , ) ( , ) ( ) ∈ Ω f u u H 1 (QP) Find: for min ( ) 0 Discretization and multigrid or FETI (Fedorenko 60’s, … , Farhat 90’s, …) ( ) = − T f x x A x b x (QP ) Find: 1 min h h h h 2 2 ≥ ≥ 2 T C x x A x C x h 2 1 ⇒ Solvable in iterations (1) O

  5. Our goal: develop tools for extending the results to constrained problems Challenges: � Identify the active constraints for free � Get rate of convergence independent of conditioning of constraints � Use only preconditioners that preserve bound constraints (e.g. lecture M. Domorádová, Thursday), not considered here

  6. Equality constrained problems ∈ i T For let ( ) = − T T f x x A x b x 1 i i i 2 { } Ω = = ≤ x B x o B C : , i i i 0 = T A A B , possibly not full rank i i i 2 ≤ ≤ 2 T C x x A x C x i 1 2 ( ) f x (QPE ) Find: min i i Ω i Goal: find approximate solution at O(1) iterations !!! Note: we do not assume full row rank of B

  7. Prolog: penalty method 1 2 ( ) ( ) = + ρ − f x f x Bx c ρ 2 ( ) ( ) = Ω f x f x on ρ = f x c ( ) ρ ∇ f � x � ρ x � 0 x = f x c Ω ( )

  8. Penalty approximation of the Lagrange multipliers 1 1 2 = + ρ T T f x x Ax -b x Bx -c ( ) 2 2 ( ) ∇ = ρ T f ρ x Ax -b + B Bx -c ( ) ( ) �� �� � λ

  9. b ε Optimal estimate ≤ ( ) x b ρ f ρ ∇ ε min + λ 0, 1 > ≤ ρ c − 0, x B > ε ⇒ .: Th

  10. ρ Non optimal but linear in estimate ε > ρ > ∇ ≤ ε Th f x b .: 0, 0, ( ) ρ β − T BA B 1 the smallest nonzero eigenvalue of + ε 1 ⇒ − ≤ − + ρ − B x c b BA b c 1 1 + βρ 1

  11. Optimality of dual penalty for FETI1 ρ Bx b H h / for varying and fixed / ρ \ n 1152 139392 2130048 1 1.32e-1 1.20e-1 1.12e-1 1000 1.40e-3 1.28e-3 1.19e-3 100 000 1.40e-5 1.28e-5 1.19e-5

  12. A ugmented Lagrangian and gradient 1 2 ( ) ( ) μ ρ = + μ + ρ T L x f x Bx -c Bx -c , , ( ) 2 ( ) ( ) ( ) μ ρ = ∇ μ ρ = μ + ρ T g x L x Ax -b + B Bx -c , , , , ( ) x �� � ��� � μ �

  13. Ω Augmented Lagrangians f ∇ � c x = ) ρ 1 , + 1 k + x k λ ( , k x x L c = ) ρ , k λ ( , x L

  14. c x λ = ( , ) L KKT conditions f ∇ x � f ∇ T λ B c = ( ) x f

  15. SMALE-Semimonotonic Augmented Lagrangians {Initialization} < β ρ > η > > μ Step M 0 0 1 , 0, 0, 0, 0 {Approximate solution of bound constrained pr ob l em} { } ( ) ρ ≤ − η k k k k Step x g x μ M Bx c 1 Find such that , , min , k {Tes } t ( ) k k ρ k − k Step g x μ B x c x 2 If , , and are sma ll then is solution k {Update Lagrange multipliers} ( ) + = + ρ − k k k Step μ μ Bx c 1 3 k {Update penalty parame ter} ρ ( ) ( ) 2 + + ρ ≤ ρ + + − k k k k + k Step L x μ L x μ k Bx c 1 1 1 1 4 If , , , , + k k 1 2 ρ = βρ then + k 1 k ρ = ρ else + k k 1 {Re peat loop} = + Step k k 5 1 and return to Step 1

  16. Basic relations for SMALE Theorem : { } { } { } − μ ρ α ∈ k k 1 x A k Let , and be generated with (0, ] Γ and >0. ρ ≥ λ (i) M A 2 If / ( ) then k min ρ ( ) ( ) 2 + μ + ρ ≥ μ ρ + + k k k k + k L x L x k Dx 1 1 1 1 , , , , + k k 1 2 = C C C C M (ii) There is ( , , ) such that 1 2 ρ ∞ ∑ 2 ≤ k k B x C 2 = k 1 Z.D. SINUM (200 ), Z.D. Computing (200 ) , 6 6 ρ

  17. Optimality of SMALE Corol lary : { } { } { } − μ ρ α ∈ 1 k k x A Let , and be generated with (0, ], i β Γ >0, M>0 and >0. (i) ρ ≤ β λ M A 2 / ( ) k min x k (ii) SMALE generates that satisfies ≤ ε ≤ ε k g x Bx k ( ) b and b O at (1) outer iterations x k (iii) SMALE with CG in inner loop generates that sati sfies ≤ ε ≤ ε k g x Bx k ( ) b and b O at (1) matrix-vector multiplications Z.D. OMS (2005), COA ( 0 2 07) ρ

  18. Convergence of Lagrange multipliers (i) Lagrange multipliers converge even for dependent constraints (ii) The convergence is linear for sufficiently large ρ

  19. CG iterace – string system on Winkler support, multipoint constraints, cond=5 G

  20. Bound constrained problems ∈ i T For let ( ) { } = − Ω = ≥ T T f x x A x b x x x c 1 , : , i i i i i 2 = > ≠ T T A A x A x x o , 0 for i i i + 2 ≤ ≤ 2 ≤ T C x x A x C x c C and i i 1 2 3 ( ) f x (QPB ) Find: min i i Ω i Goal: find approximate solution at O(1) iterations !!!

  21. Projected gradient Ω k g x − k g x ( ) ( ) − β k x ( ) β = o k x ( ) − ϕ k x − ϕ k ( ) x k P k k ( ) x g x x ( ) − k g x = g k P k g x x ( ) ( ) ( )

  22. Deleting indices from active set- proportioning T x 2 Γ ϕ ϕ ≥ β � x proportional: x x 2 ( ) ( ) ( ) Reduction of the active set + k x 1 Ω − β − k k x g x ( ) ( ) − ϕ k x ( ) k x W 1 Γ k g x ( )

  23. Proportional iterations = ϕ β = k k k g x x x ( ) ( ), ( ) 0 Ω Projection step: + k k x x 1 W expansion of the active set − α k g x ( ) Ω β − k k x g x ( ) ( ) Feasible conjugate + W k x k 1 x 1 gradient step: − ϕ k x ( ) k g x ( ) Γ

  24. MPRGP- Modified Proportioning with Reduced Gradient Projection Initialization { } − ∈ Ω α ∈ 1 Γ > x A 0 Given , (0, ], 0 Proportioning { } x x k k +1 Step 1: if is not proportional, then define by proportionalization − β x k i. e. minimalization in direction ( ) conjugate gradie nt { } + x x k k 1 Ste p 2 : if is proportional, then generate by trial cg step project ion { } + ∈ Ω x k 1 Step 3 : if then use it, + = − αϕ + x x x k 1 k k else ( ( ))

  25. Rate of convergence of MPRGP Theorem : − > = α = λ ˆ Γ Γ Γ Γ 1 x A Let max solution of 0, { , }, (QPB), ( ), 1 min { } − ⎤ α ∈ 1 x k A generated with Then 0, . : ⎦ 2 = T x x Ax The R -linear rate of convergence in the energy norm is given by (i) A αα ( ) 2 − ≤ − = − < k k x x η f x f x η 0 1 2 ( ) ( ) with 1 1 + Γ ˆ 2 A 2 2 (ii) The R -linear rate of convergence of the projected gradient is given by α α − − ( ) 1 1 36 2 ≤ − = P k k 1 g x a η f x f x a 0 ( ) ( ) ( ) , with η − η (1 ) Z.D., J. Schoeberl, Comput. Opt. Appl. (2005), Z.D. NA (2004)

  26. Optimality of MPRGP Theorem : − > = ˆ Γ Γ Γ Γ x 1 Let max solution of (QPB 0, { , }, ), i i { } − α ∈ = k x C x c o 1 0 generated with and max (0, ] { , }. i i i 2 k x Then that satisfies i − ≤ ε ≤ ε k P k x x b g x b and ( ) i i i i i is found at O (1) matrix-vector multiplications Z.D., J. Schoeberl, Comput. Opt. Appl. (2 005),

  27. Finite termination Theorem : { } x x k Let denote the solution of (QPB) generated with , − ⎤ α ∈ > 1 A Γ and Then (0, 0. ⎦ = = ≥ = k x g x k x x (i) If implies then there is such that 0 ( ) 0 0 i i ( ) ≥ κ + ≥ = k Γ A k x x (ii) If then there is s uch that 2 ( ) 1 0 (i) More Z.D. SIOPT (1996), (ii) Z.D., Schoeberl, COA (2005)

  28. CG iterace – string system on Winkler support, bound constraints, cond=5

  29. Bound and equality constrained problems ∈ i T For let ( ) = − T T f x x A x b x 1 i i i 2 { } Ω = ≥ = ≤ x x c B x o B C : and , i i i i 0 = T A A , i i ≤ ≤ + ≤ 2 T 2 C x x A x C x c C and i i 1 2 3 ( ) f x (QPBE ) Find: min i i Ω i Goal: find approximate solution at O(1) iterations !!! Note: we do not assume full row rank of D!!!

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend