estimation of singularity location for poisson process
play

Estimation of Singularity Location for Poisson Process S. Dachian - PowerPoint PPT Presentation

Estimation of Singularity Location for Poisson Process S. Dachian Laboratoire de Math ematiques Appliqu ees Universit e Blaise Pascal Clermont-Ferrand, FRANCE Statistique Asymptotique des Processus


  1. ✬ ✩ Estimation of Singularity Location for Poisson Process S. Dachian Laboratoire de Math´ ematiques Appliqu´ ees Universit´ e Blaise Pascal Clermont-Ferrand, FRANCE ✫ ✪

  2. ✬ ✩ Statistique Asymptotique des Processus Stochastiques IV Le Mans, December 19-20, 2002 The model – The process. — Poisson process of intensity function S θ ( · ): X = { X ( t ) , 0 � t � T } . – The observations. — n independent realizations (trajectories) of X : ( X 1 , . . . , X n ) = X n . – The hypotheses on S θ ( · ) . — The intensity function S θ ( · ) is regular every- where on [0 ,T ] except at the point θ , where it has a singularity. – The unknown parameter. — The location (the point) of the singularity: θ ∈ Θ = ( α,β ) ⊆ (0 ,T ) . – The types of singularities. — Three types: “cusp”, singularity of “0”-type and singularity of “ ∞ ”-type. – The asymptotics. — n − → ∞ . ✫ ✪ S. Dachian, Clermont-Ferrand (France) 1

  3. ✬ ✩ Statistique Asymptotique des Processus Stochastiques IV Le Mans, December 19-20, 2002 � a | t − θ | p + Ψ( θ, t ) , if t � θ We consider S θ ( t ) of the form S θ ( t ) = . b | t − θ | p + Ψ( θ, t ) , if t � θ We suppose that a 2 + b 2 > 0, S θ ( t ) > 0 for all t � = θ , the function Ψ( θ, t ) is continuous and uniformly in t H¨ older continuous of order µ with respect to θ . “cusp” singularity of “0”-type singularity of “ ∞ ”-type 0 < p < 1 / 2 0 < p < 1 − 1 < p < 0 µ > p + 1 / 2 µ > ( p + 1) / 2 µ > ( p + 1) / 2 Ψ( θ, θ ) > 0 Ψ( θ, θ ) = 0 ✫ ✪ S. Dachian, Clermont-Ferrand (France) 2

  4. ✬ ✩ Statistique Asymptotique des Processus Stochastiques IV Le Mans, December 19-20, 2002 The history of the problem – Prakasa Rao, B.L.S. , “Estimation of the location of the cusp of a continuous density”, Annals of Mathematical Statistics , vol. 20, no. 1, pp. 76–87, 1968. – Ibragimov, I.A. et Khasminskii, R.Z. , “ Statistical Estimation. Asymptotic Theory ”, Springer-Verlag, New York, 1981. – Dachian, S. , “Estimation of Cusp Location by Poisson Observations”, Statis- tical Inference for Stochastic Processes , to appear, 2001. – Dachian, S. , “Estimation of Singularity Location by Poisson Observations”, in preparation, 2002. – Dachian, S. et Kutoyants, Yu.A. , “On Cusp Estimation of Ergodic Diffusion Process”, Journal of Statistical Planning and Inference , to appear, 2001. ✫ ✪ S. Dachian, Clermont-Ferrand (France) 3

  5. ✬ ✩ Statistique Asymptotique des Processus Stochastiques IV Le Mans, December 19-20, 2002 The likelihood ratio is: � n � � T � T � � � L ( θ, X n ) = exp ln S θ ( t ) dX i ( t ) − n S θ ( t ) − 1 dt . i =1 0 0 The maximum likelihood estimator (MLE) � θ n is defined as one of the solutions of L ( � θ n , X n ) = sup L ( θ, X n ). the maximum likelihood equation θ ∈ Θ The Bayesian estimator (BE) for prior density q ( · ) and quadratic loss function is � β � θ | X n � � ·| X n � defined by � θ n = θ q dθ , where the posterior density q is given by: α   − 1 β � � θ | X n � = L ( θ, X n ) q ( θ )  L ( θ, X n ) q ( θ ) dθ  q . α ✫ ✪ S. Dachian, Clermont-Ferrand (France) 4

  6. ✬ ✩ Statistique Asymptotique des Processus Stochastiques IV Le Mans, December 19-20, 2002 The “cusp” case. — We introduce the stochastic process (on R ) � � Γ θ W p +1 / 2 ( u ) − 1 θ | u | 2 p +1 2 Γ 2 Z 1 ( u ) = exp � � � a 2 + b 2 � θ = B p + 1 , p + 1 Γ 2 0 < Γ 2 where cos( πp ) − 2 ab , θ < + ∞ , Ψ(0 , 0) and W H ( · ) is a fractional Brownian motion (fBm) of Hurst parameter H , that is, a centered Gaussian process with covariance � � � | u 1 | 2 H + | u 2 | 2 H − | u 1 − u 2 | 2 H � = 1 W H ( u 1 ) W H ( u 2 ) E . 2 We introduce equally the random variables ξ 1 and ζ 1 by Z 1 ( ξ 1 ) = sup Z 1 ( u ) u ∈ R   − 1 � + ∞ � + ∞   and ζ 1 = u Z 1 ( u ) du Z 1 ( u ) du . −∞ −∞ ✫ ✪ S. Dachian, Clermont-Ferrand (France) 5

  7. ✬ ✩ Statistique Asymptotique des Processus Stochastiques IV Le Mans, December 19-20, 2002 Theorem. — In the case of “cusp”, we have the following lower bound on the risks of all the estimators of θ : � �� 2 n 1 / (2 p +1) � � E ζ 2 lim lim inf sup E θ θ n − θ 1 δ → 0 n →∞ θ n | θ − θ 0 | <δ for all θ 0 ∈ Θ, where inf is taken on the set of all the estimators θ n of θ . Definition. — We say that an estimator θ n is asymptotically efficient if � �� 2 n 1 / (2 p +1) � = E ζ 2 lim lim sup E θ θ n − θ 1 n →∞ δ → 0 | θ − θ 0 | <δ for all θ 0 ∈ Θ. ✫ ✪ S. Dachian, Clermont-Ferrand (France) 6

  8. ✬ ✩ Statistique Asymptotique des Processus Stochastiques IV Le Mans, December 19-20, 2002 Theorem. — In the case of “cusp”, the BE � θ n and the MLE � θ n have uniformly in θ ∈ K (for any compact K ⊂ Θ) the following properties: • � θ n and � θ n are consistent, that is, P θ P θ � � θ n − → θ and θ n − → θ, • the limit distributions of � θ n and � θ n are given by n 1 / (2 p +1) �� � n 1 / (2 p +1) �� � θ n − θ = ⇒ ζ 1 and θ n − θ = ⇒ ξ 1 , • for any k > 0 the convergence of moments equally holds: � �� � n 1 / (2 p +1) �� k � � = E | ζ 1 | k , n →∞ E θ lim θ n − θ � � �� � n 1 / (2 p +1) �� k � � = E | ξ 1 | k . n →∞ E θ lim θ n − θ � Moreover, the BE � θ n are asymptotically efficient. ✫ ✪ S. Dachian, Clermont-Ferrand (France) 7

  9. ✬ ✩ Statistique Asymptotique des Processus Stochastiques IV Le Mans, December 19-20, 2002 The “0”-type and “ ∞ ”-type singularity cases. — We introduce the stochastic process (on R ) � � + ∞ � � � � � 1 − u − a − b � � p + 1 | u | p +1 sign( u ) + Z 2 ( u ) = exp p ln ν ( dz ) − E ν ( dz ) � z −∞ � �� � � u � + ∞ � � � + ln a � 1 − u p � 1 − u � � � � d ( z ) | z | p dz ν ( dz ) − − 1 − p ln , � � b z z 0 −∞ � a, if z � 0 and ν is a Poisson process of intensity d ( z ) | z | p . where d ( z ) = b, if z � 0 We introduce equally the random variables ξ 2 (in the case of “0”-type singularity only) and ζ 2 (in both cases) by Z 2 ( ξ 2 ) = sup Z 2 ( u ) u ∈ R   − 1 � + ∞ � + ∞   and ζ 2 = u Z 2 ( u ) du Z 2 ( u ) du . −∞ −∞ ✫ ✪ S. Dachian, Clermont-Ferrand (France) 8

  10. ✬ ✩ Statistique Asymptotique des Processus Stochastiques IV Le Mans, December 19-20, 2002 Theorem. — In the case of “0”-type or “ ∞ ”-type singularity, we have the following lower bound on the risks of all the estimators of θ : � �� 2 n 1 / ( p +1) � � E ζ 2 lim lim inf sup E θ θ n − θ 2 δ → 0 n →∞ θ n | θ − θ 0 | <δ for all θ 0 ∈ Θ, where inf is taken on the set of all the estimators θ n of θ . Definition. — We say that an estimator θ n is asymptotically efficient if � �� 2 n 1 / ( p +1) � = E ζ 2 lim lim sup E θ θ n − θ 2 n →∞ δ → 0 | θ − θ 0 | <δ for all θ 0 ∈ Θ. ✫ ✪ S. Dachian, Clermont-Ferrand (France) 9

  11. ✬ ✩ Statistique Asymptotique des Processus Stochastiques IV Le Mans, December 19-20, 2002 The BE � θ n (in both cases) and the MLE � Theorem. — θ n (in the case of “0”-type singularity only) have uniformly in θ ∈ K (for any compact K ⊂ Θ) the following properties: • � θ n and � θ n are consistent, that is, P θ P θ � � θ n − → θ and θ n − → θ, • the limit distributions of � θ n and � θ n are given by n 1 / ( p +1) �� � n 1 / ( p +1) �� � θ n − θ = ⇒ ζ 2 and θ n − θ = ⇒ ξ 2 , • for any k > 0 the convergence of moments equally holds: � �� � n 1 / ( p +1) �� k � � = E | ζ 2 | k , n →∞ E θ lim θ n − θ � � �� � n 1 / ( p +1) �� k � � = E | ξ 2 | k . n →∞ E θ lim θ n − θ � Moreover, the BE � θ n are asymptotically efficient. ✫ ✪ S. Dachian, Clermont-Ferrand (France) 10

  12. ✬ ✩ Statistique Asymptotique des Processus Stochastiques IV Le Mans, December 19-20, 2002 Ideas of the proof We use the Ibragimov and Khasminskii method which consist in studying the nor- malized likelihood ratio process Z n ( u ) = L ( θ u , X n ) L ( θ, X n ) , u ∈ U n , where we denote θ u = θ + u n − 1 /ν (with ν = 2 p + 1 or ν = p + 1) and the set � � n 1 /ν ( α − θ ) , n 1 /ν ( β − θ ) U n = , and establishing the three following properties: – The finite-dimensional distributions of Z n ( u ) converge to those of Z ( u ) (with Z = Z 1 or Z = Z 2 ) uniformly in θ ∈ K . � � 2 � � � C | u 1 − u 2 | ν uniformly in θ ∈ K . � Z 1 / 2 ( u 1 ) − Z 1 / 2 – E θ ( u 2 ) � n n � − c | u | ν � – E θ Z 1 / 2 ( u ) � exp uniformly in θ ∈ K . n ✫ ✪ S. Dachian, Clermont-Ferrand (France) 11

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend