a crash course day 2 modular forms
play

A crash course. . . Day 2: Modular Forms Sharon Anne Garthwaite - PowerPoint PPT Presentation

A crash course. . . Day 2: Modular Forms Sharon Anne Garthwaite Bucknell University March 2008 Recall, p ( n ) q n = (1 q n ) 1 . 1 p ( n ) q 24 n 1 = (1 q 24 n ) q = 1 (24 z ) , q := e 2


  1. A crash course. . . Day 2: Modular Forms Sharon Anne Garthwaite Bucknell University March 2008

  2. Recall, p ( n ) q n = � � (1 − q n ) − 1 . � − 1 p ( n ) q 24 n − 1 = � � � (1 − q 24 n ) q = η − 1 (24 z ) , q := e 2 π iz . This is an example of a modular form.

  3. Basic Definition f ( z ), a meromorphic function on the upper half plane H = { z := x + iy ∈ C : x , y ∈ R , y > 0 } , is a modular form of weight k if: ◮ f ( z + 1) = f ( z ). ◮ f ( − 1 / z ) = z k f ( z ) for some k ∈ Z . ◮ f ( z ) has a Fourier expansion ∞ � q := e 2 π iz . a f ( n ) q n ; f ( z ) := n ≥ n 0 “Behavior not too bad as z → i ∞ ”

  4. Transformation Property � a b � SL 2 ( Z ) := { : a , b , c , d ∈ Z , ad − bc = 1 } c d � 0 − 1 ◮ Example: S := � , T := ( 1 1 0 1 ) ∈ SL 2 ( Z ). 1 0 ◮ S , T generate SL 2 ( Z ).

  5. Transformation Property � a b � For V = ∈ SL 2 ( Z ), z ∈ H , c d Vz := az + b cz + d . Fractional Linear Transformations ◮ Inflations/Rotations z → az ◮ Translations z → z + b ◮ Inversions z → − 1 / z “Conformal maps” that map circles and lines to circles and lines.

  6. Transformation Property � a b � For V = ∈ SL 2 ( Z ), z ∈ H , c d Vz := az + b cz + d . Examples: ◮ T := ( 1 1 0 1 ), T : z �→ z + 1 � 0 − 1 � S := , S : z �→ 1 / z . 1 0 ◮ ST : z �→ − 1 / ( z + 1), TS : z �→ − 1 / z + 1 = ( z − 1) / z . Check: If z ∈ H , Vz ∈ H . ◮ Fundamental domain F

  7. More General Transformation Property � a b � For V = ∈ SL 2 ( Z ), z ∈ H , c d Vz := az + b cz + d . f ( Vz ) = ( cz + d ) k f ( z ) . Definition (“Slash” operator ) f | k V ( z ) := ( cz + d ) − k f ( Vz ) . Transformation property: f | k V ( z ) = f ( z )

  8. Cusps ◮ Want to “complete” H = { z := x + iy ∈ C : x , y ∈ R , y > 0 } . ◮ Add point at infinity : ∞ . ◮ � a b � ∞ = a / c . c d ◮ Cusps: ∞ ∪ Q ◮ Same equivalency class in SL 2 ( Z ).

  9. Simple Complex Analysis Let f ( z ) : C → C . ◮ z 0 is a zero of f if f ( z 0 ) = 0. ◮ z 0 is a singularity of f if f ( z 0 ) is undefined. ◮ f ( z ) is analytic if it is differentiable with respect to z . ◮ f ( z ) is meromorphic if it is analytic except an isloated singularities which are “poles.”

  10. Singularities 1. Removable Example z 2 − 1 z − 1 . 2. Poles sin( z ) = 1 1 Example z + f ( z ), f ( z ) analytic. (Taylor series) 3. Essential Example e 1 / z .

  11. Meromorphic vs. Holomorphic On SL 2 ( Z ), if f ( z ) has a Fourier expansion ∞ � q := e 2 π iz , a f ( n ) q n ; f ( z ) := n ≥ n 0 f ( z ) is holomorphic if n 0 ≥ 0. “ f ( z ) does not blow up at the cusps.” Let M k denote the space of weight k holomorphic modular forms on SL 2 ( Z ).

  12. Cauchy’s Integral Formula 1 � f ( w ) f ( z ) = z − w dw . 2 π i ∂ D where ◮ D is a bounded domain with a smooth boundary. ◮ z ∈ D . ◮ f ( z ) analytic on D . ◮ f ( z ) extends smootly to ∂ D .

  13. Applications For f ( z ) with Fourier expansion (about infinity) ∞ a f ( n ) q n = g ( q ); � q := e 2 π iz , f ( z ) := n ≥ n 0 1 g ( q ) � a f ( n ) = q n +1 dq . 2 π i γ Residue Theorem � � f ( z ) dz = 2 π i Res ( f ) | z = a . ∂ D a ∈ D

  14. Examples of Modular Forms: Eisenstein series Let 1 � G k ( z ) := ( mz + n ) k ( m , n ) ∈ Z 2 ( m , n ) � =(0 , 0) This sum is absolutely convergent for k > 2.

  15. Normalized Eisenstein series For even k ≥ 4, ∞ E k ( z ) := 1 − 2 k � σ k − 1 ( n ) q n , B k n =1 where the rational (Bernoulli) numbers B k are ∞ B n · t n e t − 1 = 1 − 1 2 t + 1 t 12 t 2 + · · · , � n ! = n =0 and � d k − 1 . σ k − 1 ( n ) = 1 ≤ d | n This is G k ( z ) normalized to have constant coefficient 1.

  16. Eisenstein Series ∞ � σ 3 ( n ) q n ◮ E 4 ( z ) := 1 + 240 n =1 ∞ � ◮ E 6 ( z ) := 1 − 504 σ 5 ( n ) q n n =1 ∞ � ◮ E 8 ( z ) := 1 + 480 σ 7 ( n ) q n n =1 ∞ � σ 9 ( n ) q n ◮ E 10 ( z ) := 1 − 264 n =1 ∞ ◮ E 12 ( z ) := 1 + 65520 � σ 11 ( n ) q n 691 n =1 ∞ � σ 13 ( n ) q n ◮ E 14 ( z ) := 1 − 24 n =1 If ℓ ≥ 5 is prime then E ℓ − 1 ( z ) ≡ 1 (mod ℓ ).

  17. Eisenstein Series ∞ � σ 1 ( n ) q n ? What about E 2 ( z ) := 1 − 24 n =1 ◮ E 2 ( z + 1) = E 2 ( z ). ◮ E 2 ( − 1 / z ) = z 2 E 2 ( z ) + 12 z 2 π i “Quasi-modular form”. Note: For p ≥ 3 prime, E 2 ( z ) ≡ E p +1 ( z ) (mod p ).

  18. More Modular Forms How can we make new modular forms? ◮ Add and subtract? Only if the same weight. ◮ Multiplication? Yes Example: E 4 ( z ) E 6 ( z ) ∈ M 10 . Can we get all modular forms from Eisenstein series?

  19. How ‘big’ is M k ? Finite dimensional C vector space. For k ≥ 4 even, dimension of M k is � ⌊ k 12 ⌋ + 1 if k �≡ 2 (mod 12) , d ( k ) := ⌊ k 12 ⌋ if k ≡ 2 (mod 12) . If k odd, d ( k ) = 0. Dimension formula consequence of the Valence formula.

  20. Valence Formula If f ( z ) ∈ M k , 12 = v ∞ ( f ) + 1 k 2 v i ( f ) + 1 � 3 v ω ( f ) + v τ ( f ) . τ ∈F τ �∈{ i ,ω } ◮ ω := e 2 π i / 3 . ◮ F fundamental domain of H . ◮ v τ ( f ) the order of vanishing of f at τ

  21. The Valence formula can be computed with complex integration.

  22. � ⌊ k 12 ⌋ + 1 if k �≡ 2 (mod 12) , d ( k ) := ⌊ k 12 ⌋ if k ≡ 2 (mod 12) . ◮ For which weights is M k one dimensional? ◮ What is the first k with d ( k ) = 2?

  23. Delta Function E 4 ( z ) 3 , E 6 ( z ) 2 ∈ M 12 . Check: E 4 ( z ) 3 � = cE 6 ( z ) 2 for any c ∈ C . Define ∆( z ) : = E 2 4 ( z ) − E 3 6 ( z ) 1728 ∞ � (1 − q n ) 24 = q n =1 = q − 24 q 2 + 252 q 3 − · · · ∈ M 12 ∩ Z [[ q ]] . ∞ ◮ ∆( z ) := η 24 ( z ) where η ( z ) := q 1 / 24 � (1 − q n ). n =1 ◮ First example of a cusp form.

  24. Cusp Forms If f ( z ) ∈ M k has Fourier expansion: ∞ � a f ( n ) q n , f ( z ) := n ≥ n 0 f ( z ) is a cusp form if a f (0) = 0. Let S k denote the space of cusp forms of weight k .

  25. Dimension formula ◮ Can use the valence formula to prove d ( k ) = 1 for k = 4 , 6 , 8 , 10 , 14. ◮ Can check by valence formula that only zero of ∆( z ) is at ∞ . ◮ Can set up a correspondence between M k − 12 and S k using multiplication/division by ∆( z ). ◮ S k = ∆ M k − 12 , k ≥ 14. ◮ M k = C E k ⊕ S k , k ≥ 4. 4 ( z ) E j ◮ It is true that M k is generated by { E i 6 ( z ) : 4 i + 6 j = k } .

  26. Ramanujan’s τ function ∞ � (1 − q n ) 24 ∆( z ) = q n =1 = q − 24 q 2 + 252 q 4 − 1472 q 4 + 4830 q 5 − 6048 q 6 − 16744 q 7 + · · · Define τ ( n ) by ∞ (1 − q n ) 24 = � � τ ( n ) q n . q n =1 Questions? ◮ For which n is τ ( n ) = 0? ◮ How big are the values of τ ( n )?

  27. Ramanujan’s τ function ◮ For which n is τ ( n ) = 0? Lehmer’s Conjecture (1947): τ ( n ) � = 0 for any n ≥ 1. ◮ How big are the values of τ ( n )? Deligne (1974) | τ ( p ) | ≤ 2 p 11 / 2 if p is prime.

  28. How quickly does p ( n ) grow? Hardy-Ramanujan (1918): � P k ( n ) + O ( n − 1 / 4 ) p ( n ) = k <α √ n α a constant, P k ( n ) an exponential function. ◮ Infinite sum diverges for all n (Lehmer, 1937) ◮ Gives e π √ 1 2 n / 3 √ p ( n ) ∼ 4 n 3 ◮ Get exact value if n large enough to make error less than 1 / 2. ◮ Marks the start of the circle method.

  29. Circle Method Idea 1. Let P ( q ) := � (1 − q n ) − 1 be generating function for p ( n ). For each n ≥ 0, ∞ p ( k ) q k P ( q ) � q n +1 = 0 < | q | < 1 q n +1 k =0 2. Cauchy’s residue theorem: 1 � P ( q ) p ( n ) = q n +1 dq 2 π i C C closed counter-clockwise contour around origin inside unit disk. 3. Want to use information about singularities of P ( q ). These occur at each root of unity ( x k = 1)

  30. Circle Method Idea 1. Choose circular contour C with radius close to 1. 2. Divide C into disjoint arcs C h , k about roots of unity e 2 π ih / k for 1 ≤ h < k ≤ N , ( h , k ) = 1. 3. On each arc C h , k replace P ( x ) that has the same behavior near e 2 π ih / k . (This is where modular transformation properties of P ( x ) comes into play.) 4. Evaluate these integrals along each arc. Make distinction between major/minor arcs for main terms and error.

  31. Rademacher, 1937: Change the contour C : Convergent formula (exact formula) for p ( n ): � π √ 24 n − 1 ∞ A k ( n ) � p ( n ) = 2 π (24 n − 1) − 3 � · I 3 , 4 k 6 k 2 k =1 � 2 z � sinh z � d ◮ I 3 / 2 ( z ) = π dz z ◮ A k ( n ) is a “Kloosterman-type” sum. � x � A k ( n ) := 1 k � 12 � � � · e , 2 12 x 12 k (mod 24 k ) x x 2 ≡− 24 n +1 (mod 24 k ) where e ( x ) := e 2 π ix .

  32. Other types of Modular Forms Recall that ∞ η ( z ) := q 1 / 24 � (1 − q n ) n =1 (1 − q n ) 24 = ∆( z ) ∈ S 12 . � η 24 ( z ) = q What about η (24 z ) = q � (1 − q 24 n )?

  33. By Euler’s identity, � (1 − q 24 n ) η (24 z ) = q ( − 1) k q (6 k +1) 2 � = k ∈ Z Can write this as χ 12 ( n ) q n 2 � n ∈ Z Where  1 n ≡ 1 , 11 (mod 12)   χ 12 ( n ) := − 1 n ≡ 5 , 7 (mod 12)  0 else .  χ 12 ( n ) is a called a Dirichlet character.

  34. Dirichlet characters Definition A function ψ : Z → C is a Dirichlet character modulo m if ◮ ψ ( n ) = ψ ( n + m ). ◮ ψ (1) = 1. ◮ ψ ( n 1 n 2 ) = ψ ( n 1 ) ψ ( n 2 ). ◮ ψ ( n ) = 0 if gcd( n , m ) = 1.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend