lecture 7 modular forms for subgroups sl 2 p z q amp
play

Lecture 7 Modular forms for subgroups SL 2 p Z q & dimension - PowerPoint PPT Presentation

Lecture 7 Modular forms for subgroups SL 2 p Z q & dimension formulas April 28, 2020 1 / 12 Modular forms SL 2 p Z q of finite index A modular ( resp. cusp) form of weight k for is a function f : H C satisfying: (i) f is


  1. Lecture 7 Modular forms for subgroups Γ Ă SL 2 p Z q & dimension formulas April 28, 2020 1 / 12

  2. Modular forms Γ Ă SL 2 p Z q of finite index A modular ( resp. cusp) form of weight k for Γ is a function f : H Ñ C satisfying: (i) f is holomorphic (ii) p f | k h qp z q “ f p z q for every h P Γ (iii) f is bounded (resp. vanishing) at cusps, that is for every g P SL 2 p Z q |p f | k g qp z q| “ O p 1 q (resp. o p 1 q ) as Im p z q Ñ `8 ˆ a b ˙ Recall: right action of g “ in weight k c d ˆ az ` b ˙ 1 p f | k g qp z q “ p cz ` d q k f cz ` d 2 / 12

  3. Why finite index? M k p Γ q : “ t mod. forms of weight k for Γ u Y S k p Γ q : “ t cusp forms of weight k for Γ u ˆ 1 ˙ 1 T “ , T p z q “ z ` 1 0 1 D h ě 1 such that T h P Γ r SL 2 p Z q : Γ s ă 8 ñ ` 2 π inz n ˘ f p z ` h q “ f p z q , f p z q “ ř n a n exp “ ř n a n q h h p iii q ñ a n “ 0 , n ă 0 Other cusps: α “ g p8q , g P SL 2 p Z q ù q -expansion for f | k g 3 / 12

  4. Weight 0 Quotient Riemann surfaces: Y p Γ q “ Γ z H X p Γ q “ Γ zp H Y P 1 p Q qq “ Y Y t cusps u compact f P M 0 p Γ q is a Γ-invariant function on H (by (ii)) ñ f P M p Y q , holomorphic (by (i)) p iii q ñ f P M p X q , holomorphic ñ f is constant M 0 p Γ q “ C S 0 p Γ q “ t 0 u 4 / 12

  5. Weight 2 Let f p z q be a modular form of weight 2 for Γ. Then f p z q dz is Γ-invariant: ˙ 1 ˆ aw ` b ˙ ˆ aw ` b ˇ f p z q dz “ f dw ˇ cw ` d cw ` d ˇ z “ aw ` b cw ` d ˆ aw ` b ˙ dw “ f p cw ` d q 2 “ f p w q dw cw ` d ñ f p z q dz descends to a holomorphic differential form ω f P Ω p Y q on Y p Γ q “ Γ z H . Near cusps: q “ exp p 2 π iz h q is a local coordinate near r8s P X p Γ q dq “ 2 π i h exp p 2 π iz h dq h q dz ñ dz “ 2 π i q 2 π i f p q q dq h 2 π i p a 0 ` a 1 q ` a 2 q 2 ` . . . q dq h ω f “ q “ q 5 / 12

  6. Weight 2 ω f “ f p z q dz P Ω p Y q , holomorphic Near cusps: q “ exp p 2 π iz h q local coordinate near r8s P X p Γ q dq “ 2 π i h exp p 2 π iz h dq h q dz ñ dz “ 2 π i q 2 π i f p q q dq h 2 π i p a 0 ` a 1 q ` a 2 q 2 ` . . . q dq h ω f “ q “ q has at most a simple pole at q “ 0 (no pole when a 0 “ 0) ñ ω f P Ω p X q , poles only at cusps Note: f P S 2 p Γ q ô ω f has no poles (holomorphic form) 6 / 12

  7. Weight 2 Summary: there is a natural injective map M 2 p Γ q Ñ Ω p X q f p z q ÞÑ ω f p“ f p z q dz q What is the image of M 2 p Γ q ? Quick answer for cusp forms: S 2 p Γ q – t holomorphic forms on X u Riemann–Roch ñ dim C S 2 p Γ q “ g p genus of X q 7 / 12

  8. dim C M 2 p Γ q M 2 p Γ q Ñ Ω p X q f p z q ÞÑ ω f p“ f p z q dz q What is the image of M 2 p Γ q ? Pick any 0 ‰ ω P Ω p X q , write ω f “ h ω , h P M p X q . Then ÿ Image p M 2 p Γ qq “ t h ω : div p h ω q ` P ě 0 u P : cusp ÿ – t h : div p h q ` D ě 0 u , D “ div p ω q ` P P Div p X q P : cusp M 2 p Γ q – L p D q , Riemann–Roch ñ dim M 2 p Γ q “ dim L p D q “ deg p D q ` 1 ´ g “ 2 g ´ 2 ` ε 8 ` 1 ´ g “ g ´ 1 ` ε 8 8 / 12

  9. f P M k p Γ q ù ??? on X p Γ q ( k ‰ 0 , 2) p U i , z i q i P I atlas of coordinate charts X “ Ť i P I U i z i : U i – z i p U i q Ă C w ij “ z i ˝ z ´ 1 : z j p U i X U j q Ñ j z j p U i X U j q transition maps Specifically: on X “ X p Γ q transition maps are given by linear fractional transformations ˆ a ˙ b w ij “ az j ` b cz j ` d , P Γ c d 9 / 12

  10. Transition maps on the quotient surfaces 10 / 12

  11. Differential k -forms, k P Z p U i , z i q i P I atlas of coordinate charts on X w ij “ z i ˝ z ´ 1 transition maps j A differential k-form ω P Ω b k p X q is a collection of meromorphic functions ω “ t g i p z i qu i P I satisfying g j p z j q “ g i p w ij p z j qqp w 1 ij p z j qq k , @ i , j . ´ az j ` b ¯ 1 1 On the quotients X “ X p Γ q we have w 1 ij “ “ cz j ` d p cz ` d q 2 ω f P Ω b k p X q f P M 2 k p Γ q ù Similarly to the case of weight 2: if we pick any 0 ‰ ω P Ω b k p X q , then (see Lecture 8 for details) Image p M 2 k p Γ qq “ t h ω : h P M p X q , div p h q ` D ě 0 u – L p D q t k t 2 k ÿ ÿ ÿ D “ div p ω q ` 2 u P ` 3 u P ` k P . P : cusp P : ell . pt P : ell . pt of order 3 of order 2 11 / 12

  12. M 2 k ` 1 p Γ q ? M 2 k ` 1 p Γ , χ q ? a generalization of k -forms p U i , z i q i P I atlas of coordinate charts on X w ij “ z i ˝ z ´ 1 : z j p U i X U j q Ñ z i p U i X U j q transition maps j A line bundle is given by a collection of non-vanishing holomorphic functions φ ij : z j p U i X U j q Ñ z i p U i X U j q φ ij p z j q ‰ 0 z j P z j p U i X U j q satisfying certain compatibility conditions on triple intersections U i X U j X U k . Its sections are collections of meromorphic functions g “ t g i p z i qu i P I satisfying g j p z j q “ g i p w ij p z j qq φ ij p z j q . Case φ ij “ w k ij corresponds to k -forms. Modular forms of odd weight and modular forms with characters define sections of more general line bundles on X p Γ q . 12 / 12

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend