equilibrium reconstruction from discrete magnetic
play

Equilibrium reconstruction from discrete magnetic measurements in a - PowerPoint PPT Presentation

Equilibrium reconstruction from discrete magnetic measurements in a Tokamak Blaise Faugeras Jacques Blum and C edric Boulbe Universit e de Nice Sophia Antipolis Laboratoire J.-A. Dieudonn e Nice, France Blaise.Faugeras@unice.fr


  1. Equilibrium reconstruction from discrete magnetic measurements in a Tokamak Blaise Faugeras Jacques Blum and C´ edric Boulbe Universit´ e de Nice Sophia Antipolis Laboratoire J.-A. Dieudonn´ e Nice, France Blaise.Faugeras@unice.fr PICOF, April 2012 B. Faugeras (Universit´ e de Nice) Equilibrium reconstruction in a Tokamak PICOF, April 2012 1 / 19

  2. Introduction. JET : vacuum vessel and plasma B. Faugeras (Universit´ e de Nice) Equilibrium reconstruction in a Tokamak PICOF, April 2012 2 / 19

  3. Introduction. Tokamak B. Faugeras (Universit´ e de Nice) Equilibrium reconstruction in a Tokamak PICOF, April 2012 3 / 19

  4. Introduction Equilibrium of a plasma : a free boundary problem Equilibrium equation inside the plasma, in axisymmetric configuration : Grad-Shafranov equation Right-hand side of this equation is a non-linear source : the toroidal component of the plasma current density Goal Identification of this non-linearity from experimental measurements. Perform the reconstruction of 2D equilibrium and the identification of the current density in real-time. B. Faugeras (Universit´ e de Nice) Equilibrium reconstruction in a Tokamak PICOF, April 2012 4 / 19

  5. Mathematical modelling of the equilibrium 3D equilibrium equations  ∇ p = j × B (Conservation of momentum)  ∇ . B = 0 (Conservation of B )  ∇ × B = µ j (Ampere’s law) Axisymmetric assumption = > Grad-Shafranov equation 2D problem. Cylindrical coordinates ( r , φ, z ) State variable ψ ( r , z ) poloidal magnetic flux B p = 1 r ∇ ψ ⊥ B. Faugeras (Universit´ e de Nice) Equilibrium reconstruction in a Tokamak PICOF, April 2012 5 / 19

  6. In the plasma : Grad-Shafranov equation − ∆ ∗ ψ := ∂ ∂ r ( 1 ∂ψ ∂ r ) + ∂ ∂ z ( 1 ∂ψ 1 ∂ z ) = rp ′ ( ψ ) + µ 0 r ( ff ′ )( ψ ) µ 0 r µ 0 r In the vacuum − ∆ ∗ ψ = 0 Boundary value problem  1  µ 0 r ff ′ ( ψ )]1 Ω p ( ψ ) − ∆ ∗ ψ = [ rp ′ ( ψ ) + Ω in  ψ = g Γ on B. Faugeras (Universit´ e de Nice) Equilibrium reconstruction in a Tokamak PICOF, April 2012 6 / 19

  7. Definition of the free plasma boundary Two cases outermost flux line inside the limiter (left) magnetic separatrix : hyperbolic line with an X-point (right) B. Faugeras (Universit´ e de Nice) Equilibrium reconstruction in a Tokamak PICOF, April 2012 7 / 19

  8. b Computational domain z − ∆ ∗ ψ = 0 Ω C i limiter ⊗ ⊗ Γ ⊗ ⊗ − ∆ ∗ ψ = j ( r, ψ ) C 0 r Ω p − ∆ ∗ ψ = j i ⊗ ⊗ flux loop Ω ⊗ ⊗ Ω 0 B probe B. Faugeras (Universit´ e de Nice) Equilibrium reconstruction in a Tokamak PICOF, April 2012 8 / 19

  9. Inverse problem Step 1 : From discrete magnetic measurements to Cauchy conditions on a fixed contour Γ Magnetic measurements Flux loops : ψ ( M i ) B probes : B p ( N i ) . d i Cauchy conditions ( ψ , ∂ n ψ ) on Γ = ∂ Ω Dirichlet BC : direct problem Neumann BC : inverse problem Numerical methods Direct Interpolation (TCV EPFL, ToreSupra CEA Cadarache) Reconstruction of ψ in the vacuum - plasma boundary identification ◮ JET : ∆ ∗ ψ = 0, ψ piecewise polynomial ◮ Toroidal harmonics + PF coils current filaments model B. Faugeras (Universit´ e de Nice) Equilibrium reconstruction in a Tokamak PICOF, April 2012 9 / 19

  10. Explicit solutions to ∆ ∗ ψ = 0 : toroidal harmonics Laplacian in cylindrical coordinates If ∆ ∗ ψ ( r , z ) = 0 in D then Ψ( r , z , φ ) = 1 r ψ ( r , z ) cos φ satisfies ∆Ψ = 0 in D × [0 2 π ] Quasi-separable solutions in bipolar (toroidal) coordinates � � Ψ( τ, η, φ ) = cosh τ − cosh η A ( τ ) B ( η ) cos φ Complete set of solutions � � P 1 � � � � cos( k η ) � � 2 (cosh τ ) a sinh τ k − 1 T P , Q √ cosh τ − cos η k ∈ N = Q 1 c , s , k 2 (cosh τ ) sin( k η ) k − 1 k ∈ N J. Segura and A. Gil. Evaluation of toroidal harmonics . CPC. 1999 Y. Fischer. PhD. 2011 B. Faugeras (Universit´ e de Nice) Equilibrium reconstruction in a Tokamak PICOF, April 2012 10 / 19

  11. Flux in the vaccum N � � ( β P , Q c , s , k )( T P , Q ψ ( r , z ) = c , s , k ) + ψ f ( r , z ; r k , z k ) k =0 k N � � ( β P , Q B ( r , z ) = c , s , k ) B k ( r , z ) + B f ( r , z ; r k , z k ) k =0 k PF coils modelized by filaments of current Current I k at ( r k , z k ) : √ rr k [(1 − α 2 ψ f ( r , z ; r k , z k ) = µ 0 I k 2 ) J 1 ( α ) − J 2 ( α )] , B f = . . . απ 2D interpolation of magnetic measurements Compute ( β P , Q c , s , k ) k =1: N by least-square fit to magnetic measurements ψ in the vacuum Ω 0 \ (Ω p ∪ Ω C i ) Evaluate ( g , h ) = ( ψ, 1 r ∂ n ψ ) on Γ B. Faugeras (Universit´ e de Nice) Equilibrium reconstruction in a Tokamak PICOF, April 2012 11 / 19

  12. Inverse problem step 2. Identification of the current density State equation  − ∆ ∗ ψ = λ [ r ψ ) + R 0  A ( ¯ r B ( ¯ ψ )]1 Ω p ( ψ ) in Ω R 0  ψ = g on Γ Least square minimization J ( A , B ) = J 0 + J ǫ with � (1 ∂ψ ∂ n − h ) 2 ds J 0 = r Γ � 1 � 1 ( ∂ 2 A ( ∂ 2 B ψ 2 ) 2 d ¯ ψ 2 ) 2 d ¯ J ǫ = ǫ ψ + ǫ ψ ∂ ¯ ∂ ¯ 0 0 B. Faugeras (Universit´ e de Nice) Equilibrium reconstruction in a Tokamak PICOF, April 2012 12 / 19

  13. Numerical method Finite element resolution  Find ψ ∈ H 1 with ψ = g on Γ such that    � � 1 λ [ r ψ ) + R 0  ∀ v ∈ H 1 A ( ¯ r B ( ¯ µ 0 r ∇ ψ ∇ vdx = ψ )] vdx  0 ,  R 0 Ω Ω p with A ( x ) = � B ( ψ ) = � i a i f i ( x ) , i b i f i ( x ) , u = ( a i , b i ) Fixed point K ψ = Y ( ψ ) u + g K modified stiffness matrix, u coefficients of A and B , g Dirichlet BC Direct solver : ( ψ n , u ) → ψ n +1 ψ n +1 = K − 1 [ Y ( ψ n ) u + g ] B. Faugeras (Universit´ e de Nice) Equilibrium reconstruction in a Tokamak PICOF, April 2012 13 / 19

  14. Numerical method Least-square minimization J ( u ) = � C ψ − h � 2 + u T Au d : Neumann data A : regularization terms Approximation J ( u ) = � C ψ − d � 2 + u T Au , with ψ = K − 1 [ Y ( ψ n ) u + g ] = � CK − 1 Y ( ψ n ) u + CK − 1 g − d � 2 + u T Au J ( u ) = � E n u − F � 2 + u T Au Normal equation. Inverse solver : ψ n → u ( E nT E n + A ) u = E nT F B. Faugeras (Universit´ e de Nice) Equilibrium reconstruction in a Tokamak PICOF, April 2012 14 / 19

  15. Algorithm. EQUINOX One equilibrium reconstruction : Fixed-point iterations : ◮ Inverse solver : ψ n → u n +1 ◮ Direct solver : ( ψ n , u n +1 ) → ψ n +1 ◮ Stopping condition || ψ n +1 − ψ n || < ǫ || ψ n || A pulse in real-time : Quasi-static approach : ◮ first guess at time t = equilibrium at time t − δ t ◮ limited number of iterations Normal equation : ≈ 10 basis func. → small ≈ 20 × 20 linear system Tikhonov regularization parameters unchanged K = LU and K − 1 , toroidal harmonics precomputed Expensive operations : update products CK − 1 Y ( ψ ) B. Faugeras (Universit´ e de Nice) Equilibrium reconstruction in a Tokamak PICOF, April 2012 15 / 19

  16. Numerical Results : Tore Supra and JET characteristics ToreSupra JET Finite element mesh Number of triangles 1382 2871 Number of nodes 722 1470 functions A and B Basis type Bspline Bspline Number of basis func. 8 8 Computation time (1.80GHz) One equilibrium 20 ms 60 ms Real-time requirement : 100 ms B. Faugeras (Universit´ e de Nice) Equilibrium reconstruction in a Tokamak PICOF, April 2012 16 / 19

  17. Tore Supra - Magnetics and polarimetry B. Faugeras (Universit´ e de Nice) Equilibrium reconstruction in a Tokamak PICOF, April 2012 17 / 19

  18. JET - Magnetics and polarimetry B. Faugeras (Universit´ e de Nice) Equilibrium reconstruction in a Tokamak PICOF, April 2012 18 / 19

  19. Conclusion Algorithm for equilibrium reconstruction and identification of the current density in real-time. EQUINOX Possibility to use internal measurements (interferometry, polarimetry, MSE) Robust identification of the averaged current density profile Makes possible future real-time control of current density profile Ref : Blum, Boulbe and Faugeras. Reconstruction of the equilibrium of the plasma in a Tokamak and identification of the current density profile in real time, JCP 231 (2012) 960-980 . B. Faugeras (Universit´ e de Nice) Equilibrium reconstruction in a Tokamak PICOF, April 2012 19 / 19

  20. Tore Supra. Magnetics and polarimetry.

  21. Jet 68694. Magnetics only.

  22. Jet 68694. Magnetics and polarimetry.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend