thermodynamic magnetic simulations
play

Thermodynamic Magnetic Simulations Ising Model with Metropolis - PowerPoint PPT Presentation

Thermodynamic Magnetic Simulations Ising Model with Metropolis Algorithm Rubin H Landau Sally Haerer, Producer-Director Based on A Survey of Computational Physics by Landau, Pez, & Bordeianu with Support from the National Science


  1. Thermodynamic Magnetic Simulations Ising Model with Metropolis Algorithm Rubin H Landau Sally Haerer, Producer-Director Based on A Survey of Computational Physics by Landau, Páez, & Bordeianu with Support from the National Science Foundation Course: Computational Physics II 1 / 1

  2. Problem: Explain Thermal Behavior of Ferromagnets What are Magnets and How Do They Behave? Ferromagnets = � finite domains Domain: all atoms’ spins aligned External � B : align domains ⇒ magnetized T ↑ : � magnetism ↓ (spins flip?) @ T curie : phase transition, � M = 0 Explain more than usual 2 / 1

  3. Ising Model: N Magnetic Dipoles on Linear Chain Constrained Many Body Quantum System E = + J E = – J Same model 2-D, 3-D Particle i , spin s i ≡ s z , i = ± 1 Fixed ⇒ no movements 2 Ψ : N spin values Spin dynamics � � ± 1 2 , ± 1 j = 1 , . . . , 2 N | α j � = | s 1 , s 2 , . . . , s N � = 2 , . . . , 3 / 1

  4. Ising Model Continued Quantum Interaction of N Magnetic Dipoles E = + J s i · � V i = − J � s i · � s i + 1 − g µ b � B J > 0: ferromagnet ↑↑↑ E = – J J < 0: antiferromagnet ↑↓↑↓ s i = ↑ , ↓ ⇒ 2 N states g = gyromagnetic ratio Fixed ⇒ no exchange � J = g � µ µ · � Energy: � µ · � µ + � B µ b = e � / ( 2 m e c ) J = exchange energy 4 / 1

  5. Many Body Problem ( N ≥ 2 , 3 Unsolved) Beyond N = 2, 3 Use Statistics, Approximations E = + J N − 1 N � � E α k = − J s i s i + 1 − B µ b s i i = 1 i = 1 E = – J 2 N → large (2 20 > 10 6 ) Not equilibrium approach 10 23 : hah! Curie Temperature: B ext → 0 ⇒ no direction � M ( T > T c ) ≡ 0 ⇒ < � M > = 0 T < T c : quantum macroscopic order Yet spins aligned?? 1D: no phase transition Spontaneous reversal 5 / 1

  6. Statistical Mechanics (Theory) Microscopic Origin of Thermodynamics Basis: all configurations < constraints possible Microcanonical Ensemble : energy fixed Canonical Ensemble : (here) T , V , N fixed, not E “At temperature T ”: equilibrium � E � ∝ T Equilibrium � static ⇒ continual random fluctuates Canonical ensemble: E α vary via Boltzmann ( k B ): P ( E α , T ) = e − E α / k B T E = + J Z ( T ) � e − E α / k B T Z ( T ) = E = – J α Sum: individual states, not g ( E α ) weighted sum 6 / 1

  7. Analytic Solutions N → ∞ Ising Model 1-D Ising U = � E � (1)  k B T = − N e J / k B T − e − J / k B T N , k B T → 0 , U J  J = − N tanh e J / k B T + e − J / k B T = (2) 0 , k B T → ∞  Ne J / k B T sinh ( B / k B T ) M ( k B T ) = . (3) � e 2 J / k B T sinh 2 ( B / k B T ) + e − 2 J / k B T 2-D Ising  0 , T > T c   M ( T ) = (4) ( 1 + z 2 ) 1 / 4 ( 1 − 6 z 2 + z 4 ) 1 / 8 √ , T < T c ,   1 − z 2 z = e − 2 J / k B T , kT c ≃ 2 . 269185 J , (5) 7 / 1

  8. Metropolis Algorithm (A Top 10 Pick) Basic Concepts (Mystery That It Works) Boltzmann � system remain lowest E state Boltzmann ⇒ higher E less likely than lower E T → 0: only lowest E Finite T : ∆ E ∼ k B T fluctuations ∼ equilibrium Metropolis, Rosenbluth, Teller & Teller: n transport Clever way improve Monte Carlo averages Simulates thermal equilibrium fluctuations Randomly change spins, � follows � ≃ Boltzmann Combo: variance reduction & von Neumann rejection 8 / 1 Random, most likely predominant

  9. Metropolis Algorithm Implementation Number of Steps, Multiple Paths to Equilibrium Configuration Start: fixed T , arbitrary α k = { s 1 , s 2 , . . . , s N } , E α k 1 Trial: flip random spin(s), calculate E trial 2 If E trial ≤ E α k , accept: α k + 1 = α trial 3 − ∆ E kBT : If E trial > E α k , accept + relative probable R = e 4 Choose uniform 0 ≤ r i ≤ 1  α trial , if R ≥ r j (accept) ,  Set α k + 1 = α k , if R < r j (reject) .  Iterate, equilibrate (wait ≃ 10 N ) 5 Physics = fluctuations → M ( T ) , U ( T ) 6 Change T , repeat 7 9 / 1

  10. Metropolis Algorithm Implementation ( IsingViz.py ) Hot start: random 1st J = k B T = 1, N ≤ 20 Cold start: parallel, anti Watch equilibrate: ∆ starts > 10 N iterates no Large flucts: ↑ T , ↓ N matter Large k B T : instabilities More averages better Small k B T : slow equilibrate Data structure = s[N] Domain formation & total E Print + , − ea site ( E > 0: ↑↓ , ↓↑ ) Periodic BC 10 / 1

  11. Calculate Thermodynamic Properties Average in Equilibrium 100 spins 1 1 C C E 0. 0 .3 3 M M – –0 0. .4 4 0 0. .2 2 0. .5 5 0. .1 1 –0 0. .8 8 0. .0 0 0 0 2 2 4 4 0 0 2 2 4 4 kT T k kT T N − 1 N C simple = 1 d � E � � � E α j = − J s i s i + 1 , M j = s i , N dT i = 1 i = 1 � � M ( k b T → ∞ ) → 0 M ( k b T → 0 ) → N / 2 11 / 1

  12. Get to Work! 12 / 1

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend