hyp 2012 a positive well balanced and entropy satisfying
play

HYP 2012 A positive, well-balanced and entropy-satisfying scheme - PowerPoint PPT Presentation

HYP 2012 A positive, well-balanced and entropy-satisfying scheme for shallow water flows Interest of the kinetic description E. Audusse, M.-O. Bristeau, C. Pares & J. Sainte-Marie Padova - june 2012 Introduction Kinetic description &


  1. HYP 2012 A positive, well-balanced and entropy-satisfying scheme for shallow water flows Interest of the kinetic description E. Audusse, M.-O. Bristeau, C. Pares & J. Sainte-Marie Padova - june 2012

  2. Introduction Kinetic description & scheme Numerical validations Outline & Main ideas Introduction Kinetic description & num. scheme general scheme with discrete entropy Numerical validations * * * * * * * * * * • Interest of efficient numerical methods ◦ in fluid mechanics, geophysics ◦ non smooth solutions, few dissipation • Useful in practice (simple): for scientists, industrial

  3. Introduction Kinetic description & scheme Numerical validations Seism : Japan, march 2011 source IPGP (A. Mangeney)

  4. Introduction Kinetic description & scheme Numerical validations Comparison with DART buoys (3d hyd. Navier-Stokes) Long distance small amplitude ⇒ accurate scheme is needed

  5. Introduction Kinetic description & scheme Numerical validations Japan tsunami simulated with Saint-Venant • Hydrostatic reconstruction vs. proposed scheme ◦ Unstructured mesh, 2.10 6 nodes, 1 st order scheme (space & time)

  6. Introduction Kinetic description & scheme Numerical validations The Saint-Venant system � ∂ t + ∂ ( H ¯ u ) ∂ H = 0 ∂ x ( SV ) � 2 H 2 � u 2 + g ∂ ( H ¯ u ) + ∂ = − gH ∂ z b H ¯ ∂ t ∂ x ∂ x • The system is hyperbolic • The water depth satisfies � d H ≥ 0 , H = 0 dt • Static equilibrium, “lake at rest” u = 0 , H + z b = Cst • It admits a convex entropy (the energy) � � � � u 2 u 2 ∂ H ¯ 2 + g + ∂ H ¯ 2 H 2 + gHz b 2 + gH 2 + gHz b ∂ x u ≤ 0 ∂ t ⇒ Positivity, well-balancing, consistency, discrete entropy . . . without reconstruction

  7. Introduction Kinetic description & scheme Numerical validations Num. methods for the Saint-Venant system • Finite volume schemes [Bouchut’04] • Various solvers (relaxation, Roe, HLL, kinetic,. . . ) • Well-balanced scheme required ∂ H ∂ t + ∂ ( H ¯ u ) i − ∆ t ⇒ H n + 1 = H n ∆ x ( F n i + 1 / 2 − F n = 0 , i − 1 / 2 ) i ∂ x max ( √ gH i , √ gH i + 1 ) with e.g. F n i + 1 / 2 = ( H i − H i + 1 ) � = 0 2 when H j + z b , j = Cst • Hydrostatic reconstruction [ABBKP,04] ◦ z ∗ b , j , z ∗ b , j + 1 ⇒ H ∗ j = H ∗ j + 1 at rest ◦ efficient, various situations ◦ only semi discrete entropy

  8. Introduction Kinetic description & scheme Numerical validations Kinetic representation of the Saint-Venant system � � � ξ − ¯ u • Gibbs equilibrium M ( x , t , ξ ) = H c χ with c = gH / 2 c � � R ω 2 χ ( ω ) = 1 where χ ( ω ) = χ ( − ω ) ≥ 0, supp ( χ ) ⊂ Ω , R χ ( ω ) = Proposition (Audusse, Bristeau, Perthame 04) The functions ( H , ¯ u , E )( t , x ) are strong solutions of the Saint-Venant system if and only if M ( x , t , ξ ) is solution of the kinetic equation ∂ M ∂ t + ξ ∂ M ∂ x − g ∂ z b ∂ M ( B ) , ∂ξ = Q ( x , t , ξ ) ∂ x where Q ( t , x , ξ ) is a collision term. � • Macroscopic variables ( H , ¯ R ( 1 , ξ, ξ 2 / 2 ) M d ξ u , E ) = • A linear transport equation . . . easy to upwind

  9. Introduction Kinetic description & scheme Numerical validations Discrete scheme for the Saint-Venant system (I) � � i = H n u n ξ − ¯ • Gibbs equilibrium M n i χ i i c n c n i • A simple upwind scheme, for a given ξ � ∂ M n i + 1 / 2 M n + 1 − M n i − σ n ξ ( M n i + 1 − M n = i ) ✶ ξ ≤ 0 − g ∆ z b , i + 1 / 2 i i ∂ξ � ∂ M n i − 1 / 2 + ξ ( M n i − M n i − 1 ) ✶ ξ ≥ 0 − g ∆ z b , i − 1 / 2 ∂ξ with M n i + 1 / 2 = M n i + 1 / 2 − ✶ ξ ≤ 0 + M n i + 1 / 2 + ✶ ξ ≥ 0 M n i + 1 / 2 − , M n to be defined later i + 1 / 2 − • Key point � � � ∂ M i + 1 / 2 + ∂ M i + 1 / 2 − ∂ M ∂ξ d ξ = 0 , but d ξ + d ξ � = 0 ∂ξ ∂ξ ❘ ξ ≤ 0 ξ ≥ 0

  10. Introduction Kinetic description & scheme Numerical validations Discrete scheme for the Saint-Venant system (II) • Extended version of an idea in Perthame-Simeoni’01 � � � ∂ξ − ξ ∂ � g ∂ z b ∂ M M ξ p d ξ = 0 , p = 0 , 1 , ∂ x ∂ x ❘ � � � with � ξ � H M = c χ , H = η − z b , η = Cst � � c • The proposed scheme is � � M n + 1 − M n i − σ n M n i + 1 / 2 − M n = i i i − 1 / 2 with i + 1 / 2 − ξ � M n ξ M n M n = i + 1 / 2 i + 1 / 2 M n M n i ✶ ξ ≥ 0 + M n = i + 1 ✶ ξ ≤ 0 i + 1 / 2 � � i + 1 / 2 + ✶ ξ ≤ 0 + � M n M n M n = i + 1 / 2 − ✶ ξ ≥ 0 i + 1 / 2 � � � H n ξ i + 1 / 2 − � � M n H n = χ , i + 1 / 2 − = η i + 1 / 2 − z b , i i + 1 / 2 − c n c n � � i + 1 / 2 − i + 1 / 2 −

  11. Introduction Kinetic description & scheme Numerical validations Discrete scheme for the Saint-Venant system (III) • The proposed scheme is � � M n + 1 − M n i − σ n M n i + 1 / 2 − M n = i i − 1 / 2 i with i + 1 / 2 − ξ � M n ξ M n M n = i + 1 / 2 i + 1 / 2 M n M n i ✶ ξ ≥ 0 + M n = i + 1 ✶ ξ ≤ 0 i + 1 / 2 � � i + 1 / 2 + ✶ ξ ≤ 0 + � M n M n M n = i + 1 / 2 − ✶ ξ ≥ 0 i + 1 / 2 � � � H n ξ i + 1 / 2 − � � M n H n = χ , i + 1 / 2 − = η i + 1 / 2 − z b , i i + 1 / 2 − c n c n � � i + 1 / 2 − i + 1 / 2 − • Macroscopic scheme � � H n + 1 ❘ M n + 1 − H n + 1 u n + 1 ❘ ξ M n + 1 − = d ξ, = d ξ i i i i i • only analytic quadrature formula

  12. Introduction Kinetic description & scheme Numerical validations Properties of the scheme • Key point � � � ∂ M i + 1 / 2 + ∂ M i + 1 / 2 − ∂ M ∂ξ d ξ = 0 , but d ξ + d ξ � = 0 ∂ξ ∂ξ ❘ ξ ≤ 0 ξ ≥ 0 • Well-balanced ◦ trivial • Positive ◦ the CFL does not depend on ∂ z b ∂ x ◦ well behaves when H → 0 • Consistency • 2 nd order in time (Modified Heun) and space (centered term) • Convergence rate : C ∆ x vs. c ∆ x with c < C c n • With modified ˆ i + 1 / 2 ± : can be used with other FV solvers (HLL, Rusanov) • No discrete entropy

  13. Introduction Kinetic description & scheme Numerical validations Scheme for H ≥ | ∆ z b | (discrete entropy) - I • Gibbs equilibrium � � � � ξ − ¯ u ξ − ¯ u ◦ M ( x , t , ξ ) = H M ( x , t , ξ ) = H c χ 0 , c φ χ 0 c c � � + ∞ 1 − z 2 ◦ χ 0 ( z ) = 1 4 , φ χ 0 ( z ) = z 1 χ 0 ( z 1 ) dz 1 π z • χ 0 is the minimum of the set (energy), see [Perthame-Simeoni 01] � ξ 2 � � 2 f ( ξ ) + g 2 8 f 3 ( ξ ) + gz b f ( ξ ) E ( f ) = d ξ ❘ • Modified Boltzmann equation ∂ M ∂ t + ξ ∂ M ∂ x − g ∂ z b ∂ M ∂ξ = Q ∂ x ∂ M ∂ t + ξ ∂ M ∂ x + g ξ − u M ∂ z b ⇔ ∂ x = Q c 2 ∂ ξ eliminated in the Boltzmann equation...

  14. Introduction Kinetic description & scheme Numerical validations Scheme for H ≥ H 0 > 0 (discrete entropy) - II • Goal : M n + 1 − as a convex combination of M n i − 1 , M n i and M n i + 1 i • A simple upwind scheme, for a given ξ � � M n + 1 − M n i − σ n M n i + 1 / 2 − M n = i i i − 1 / 2 with M n M n i + 1 / 2 + + M n = i + 1 / 2 i + 1 / 2 − � � ξ − u n ξ + 2 ∆ z b , i + 1 / 2 i + 1 M n c n ✶ ξ ≤ ξ i + 1 / 2 + M n = i + 1 / 2 + i + 1 / 2 + i + 1 H n c n i + 1 i + 1 � � ξ + 2 ∆ z b , i + 1 / 2 ξ − u n M n i c n ✶ ξ ≥ ξ i + 1 / 2 − M n = i + 1 / 2 − i + 1 / 2 − i H n c n i i • So M n + 1 − = ( 1 − A n i ) M n i + A n i − 1 / 2 + M n i − 1 + A n i + 1 / 2 − M n i + 1 i with A n j ≥ 0, 1 − A n i ≥ 0

  15. Introduction Kinetic description & scheme Numerical validations Scheme for H ≥ H 0 > 0 (discrete entropy) - III • The scheme is well-balanced, consistent and positive Proposition Let us consider a real convex function e ( . ) defined over ❘ + . Under the CFL condition, the scheme satisfies the in-cell entropy inequality � � E n + 1 ≤ E n Λ n i + 1 / 2 − Λ n i + σ i i − 1 / 2 i � with E n e ( M n = i ) d ξ i ❘ � � � Λ n σ n A n i + 1 / 2 − e ( M n i + 1 ) − A n i e ( M n = i ) d ξ i + 1 / 2 i ❘ 8 f 3 + gz b f gives a discrete version In particular the choice e ( f ) = ξ 2 2 f + g 2 of the energy balance.

  16. Introduction Kinetic description & scheme Numerical validations Numerical validations • Only analytical solutions • Stationary/transient, continuous/discontinuous solutions • 1 st and 2 nd order schemes ⇒ not exhaustive validations • Two main ideas ◦ Systematic biais & accuracy ◦ fluvial regime over a bump (anim) ◦ general scheme

  17. Introduction Kinetic description & scheme Numerical validations Other solvers • HLL, kinetic & Rusanov fluxes • 1 st and 2 nd order schemes • fluvial regime over a bump • general scheme

  18. Introduction Kinetic description & scheme Numerical validations Transcritical regime with shock • HLL & kinetic fluxes • general scheme

  19. Introduction Kinetic description & scheme Numerical validations Parabolic bowl • Kinetic fluxes • 1 st and 2 nd order (in space & time) schemes • general scheme (anim)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend