efficient parametrically robust nonlinear model reduction
play

Efficient, Parametrically-Robust Nonlinear Model Reduction using - PowerPoint PPT Presentation

Introduction Local Reduced-Order Models Application Conclusion Efficient, Parametrically-Robust Nonlinear Model Reduction using Local Reduced-Order Bases Matthew J. Zahr and Charbel Farhat Farhat Research Group Stanford University SIAM


  1. Introduction Local Reduced-Order Models Application Conclusion Efficient, Parametrically-Robust Nonlinear Model Reduction using Local Reduced-Order Bases Matthew J. Zahr and Charbel Farhat Farhat Research Group Stanford University SIAM Computational Science and Engineering Conference February 25 - March 1, 2013 Zahr and Farhat

  2. Introduction Local Reduced-Order Models Application Conclusion 1 Introduction 2 Local Reduced-Order Models Offline Phase Online Phase Fast, Reduced Basis Updating Hyperreduction 3 Application Burger’s Equation (Non-predictive) Potential Nozzle (Predictive) 4 Conclusion Zahr and Farhat

  3. Introduction Local Reduced-Order Models Application Conclusion Motivation Complex, time-dependent problems Real-time analyses Model Predictive Control Many-query analyses Optimization Uncertainty-Quantification Zahr and Farhat

  4. Introduction Local Reduced-Order Models Application Conclusion Model Order Reduction Framework Data collection Compression I. Full-order model Approximation 1: Projection II. Reduced-order model Data collection Compression Approximation 2: System approximation Reduced-order model + system approximation III. [Carlberg et. al. 2011] Zahr and Farhat

  5. Introduction Local Reduced-Order Models Application Conclusion High-Dimensional Model Consider the nonlinear system of Ordinary Differential Equations (ODE), usually arising from the semi-discretization of Partial Differential Equation, d w dt = F ( w , t, µ ) where w ∈ R N state vector µ ∈ R d parameter vector F : R N × R × R d → R N nonlinearity of ODE This is the High-Dimensional Model (HDM). Zahr and Farhat

  6. Introduction Local Reduced-Order Models Application Conclusion Fully Discretization of HDM Our approach to Model Order Reduction leverages dimensionality reduction at the fully discrete level Full, implicit (single-step) discretization of the governing equation yields a sequence of nonlinear systems of equations: R ( w ( n ) , t n , µ ; w ( n − 1) ) = 0 , n ∈ { 1 , 2 , . . . , N s } where w ( n ) = w ( t n ) R : R N × R × R d → R N From this point, we drop the dependence of R on the previous time step w ( n − 1) . Zahr and Farhat

  7. Introduction Local Reduced-Order Models Application Conclusion Model Order Reduction with Local Bases The goal of reducing the computational cost and resources required to solve a large-scale system of ODEs is attempted through dimensionality reduction Specifically, the (discrete) trajectory of the solution in state space is assumed to lie in a low-dimensional affine subspace w ( n ) ≈ w ( n − 1) + Φ( w ( n − 1) ) y ( n ) Φ( w ( n − 1) ) ∈ R N × k w ( w ( n − 1) ) Reduced Basis y ( n ) ∈ R k w ( w ( n − 1) ) Reduced Coordinates where k w ( w ( n − 1) ) ≪ N Zahr and Farhat

  8. Introduction Offline Phase Local Reduced-Order Models Online Phase Application Hyperreduction Conclusion Overview In practice, N V bases are computed in an offline phase: Φ i ∈ R N × k i w Each basis, Φ i , is associated with a representative vector in state space, w i c Then, Φ( w ( n − 1) ) . = Φ i , where || w ( n − 1) − w i c || ≤ || w ( n − 1) − w j c || for all j ∈ { 1 , 2 , . . . , N V } . Contrived Example 1 � � � x ( t ) � d x ( t ) 2 + y ( t ) 2 = sin x ( t ) y ( t ) − dt x ( t ) 2 + y ( t ) 2 � x (0) � � − 1 � = y (0) 0 Zahr and Farhat

  9. Introduction Offline Phase Local Reduced-Order Models Online Phase Application Hyperreduction Conclusion Data Collection HDM sampling (snapshot collection) Simulate HDM at one or more parameter configurations { µ 1 , . . . , µ n } and collect snapshots w ( j ) Combine in snapshot matrix W Figure : Contrived Example: HDM 0.5 0.4 0.3 0.2 0.1 y 0 − 0.1 − 0.2 − 0.3 − 0.4 − 1 − 0.5 0 0.5 1 1.5 x Zahr and Farhat

  10. Introduction Offline Phase Local Reduced-Order Models Online Phase Application Hyperreduction Conclusion Data Organization Snapshot clustering Cluster snapshots using the k-means algorithm based on their relative distance in state space Store the center of each cluster, w i c W partitioned into cluster snapshot matrices W i Figure : Contrived Example: Snapshot Clustering 0.5 0.4 0.3 0.2 0.1 y 0 − 0.1 Cluster 1 − 0.2 Cluster 2 − 0.3 Cluster 3 − 0.4 − 1 − 0.5 0 0.5 1 1.5 x Zahr and Farhat

  11. Introduction Offline Phase Local Reduced-Order Models Online Phase Application Hyperreduction Conclusion Data Compression Modify snapshot matrices W i by subtracting a reference w from each column ˆ we T vector, ¯ W i = W i − ¯ Apply POD method to each cluster: Φ i = POD( ˆ W i ) Figure : Contrived Example: Basis Construction 0.5 0.4 0.3 0.2 0.1 y 0 − 0.1 HDM − 0.2 Subspace 1 Subspace 2 − 0.3 Subspace 3 − 0.4 − 1 − 0.5 0 0.5 1 1.5 x Zahr and Farhat

  12. Introduction Offline Phase Local Reduced-Order Models Online Phase Application Hyperreduction Conclusion Overview The MOR assumption is substituted into the HDM to obtain the over-determined nonlinear system of equations: R ( w ( n − 1) + Φ i y ( n ) , t n , µ ) = 0 Since the above system does not have a solution, in general, we seek the solution that minimizes the residual of the HDM in the chosen affine subspace: y ( n ) = arg min || R ( w ( n − 1) + Φ i y , t n , µ ) || 2 y ∈ R ki w This is the Reduced-Order Model (ROM) Zahr and Farhat

  13. Introduction Offline Phase Local Reduced-Order Models Online Phase Application Hyperreduction Conclusion Inconsistency Recall the MOR assumption: w ( n ) − w ( n − 1) ≈ Φ i y ( n ) n w ( n ) − w ( switch ) ≈ Φ i � y ( k ) k = switch where w ( switch ) is the most recent state to initiate a switch between bases. Recall the reduced bases are constructed as Φ i = POD we T � � W i − ¯ Basis construction consistent with MOR assumption only if w = w ( switch ) ¯ Zahr and Farhat

  14. Introduction Offline Phase Local Reduced-Order Models Online Phase Application Hyperreduction Conclusion Solution: Fast Basis Updating We seek a reduced basis of the form: Φ i = POD ( W i − w ( switch ) e T ) ˆ we T + ( ¯ w − w ( switch ) ) e T ) = POD ( W i − ¯ w − w ( switch ) ) e T ) = POD ( ˆ W i + ( ¯ ˆ Φ is the (truncated) left singular vectors of a matrix that is a rank-one update of a matrix, ˆ W i , whose (truncated) left singular vectors is readily available, Φ i . Fast updates available [Brand 2006]. Zahr and Farhat

  15. Introduction Offline Phase Local Reduced-Order Models Online Phase Application Hyperreduction Conclusion Figure : Contrived Example: ROM Solution No Basis Updating Basis Updating 0.8 0.8 0.6 0.6 0.4 0.4 y 0.2 y 0.2 0 0 HDM HDM Subspace 1 Subspace 1 Subspace 2 Subspace 2 − 0.2 − 0.2 Subspace 3 Subspace 3 Local ROM Local ROM − 0.4 − 0.4 − 1 − 0.5 0 0.5 1 1.5 − 1 − 0.5 0 0.5 1 1.5 x x Zahr and Farhat

  16. Introduction Offline Phase Local Reduced-Order Models Online Phase Application Hyperreduction Conclusion Figure : Contrived Example: ROM Solution No Basis Updating Basis Updating 0.8 0.8 0.6 0.6 0.4 0.4 y 0.2 y 0.2 0 0 HDM HDM Subspace 1 Subspace 1 Subspace 2 Subspace 2 − 0.2 − 0.2 Subspace 3 Subspace 3 Local ROM Local ROM − 0.4 − 0.4 − 1 − 0.5 0 0.5 1 1.5 − 1 − 0.5 0 0.5 1 1.5 x x Zahr and Farhat

  17. Introduction Offline Phase Local Reduced-Order Models Online Phase Application Hyperreduction Conclusion Figure : Contrived Example: ROM Solution No Basis Updating Basis Updating 0.8 0.8 0.6 0.6 0.4 0.4 y 0.2 y 0.2 0 0 HDM HDM Subspace 1 Subspace 1 Subspace 2 Subspace 2 − 0.2 − 0.2 Subspace 3 Subspace 3 Local ROM Local ROM − 0.4 − 0.4 − 1 − 0.5 0 0.5 1 1.5 − 1 − 0.5 0 0.5 1 1.5 x x Zahr and Farhat

  18. Introduction Offline Phase Local Reduced-Order Models Online Phase Application Hyperreduction Conclusion Figure : Contrived Example: ROM Solution No Basis Updating Basis Updating 0.8 0.8 0.6 0.6 0.4 0.4 y 0.2 y 0.2 0 0 HDM HDM Subspace 1 Subspace 1 Subspace 2 Subspace 2 − 0.2 − 0.2 Subspace 3 Subspace 3 Local ROM Local ROM − 0.4 − 0.4 − 1 − 0.5 0 0.5 1 1.5 − 1 − 0.5 0 0.5 1 1.5 x x Zahr and Farhat

  19. Introduction Offline Phase Local Reduced-Order Models Online Phase Application Hyperreduction Conclusion Figure : Contrived Example: ROM Solution No Basis Updating Basis Updating 0.8 0.8 0.6 0.6 0.4 0.4 y 0.2 y 0.2 0 0 HDM HDM Subspace 1 Subspace 1 Subspace 2 Subspace 2 − 0.2 − 0.2 Subspace 3 Subspace 3 Local ROM Local ROM − 0.4 − 0.4 − 1 − 0.5 0 0.5 1 1.5 − 1 − 0.5 0 0.5 1 1.5 x x Zahr and Farhat

  20. Introduction Offline Phase Local Reduced-Order Models Online Phase Application Hyperreduction Conclusion Figure : Contrived Example: ROM Solution No Basis Updating Basis Updating 0.8 0.8 0.6 0.6 0.4 0.4 y 0.2 y 0.2 0 0 HDM HDM Subspace 1 Subspace 1 Subspace 2 Subspace 2 − 0.2 − 0.2 Subspace 3 Subspace 3 Local ROM Local ROM − 0.4 − 0.4 − 1 − 0.5 0 0.5 1 1.5 − 1 − 0.5 0 0.5 1 1.5 x x Zahr and Farhat

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend