travelling waves for a nonlocal kdv burgers equation
play

Travelling waves for a nonlocal KdV-Burgers equation Sabine - PowerPoint PPT Presentation

Travelling waves for a nonlocal KdV-Burgers equation Sabine Hittmeir University of Vienna joint work with: Franz Achleitner, Carlota Cuesta, Christian Schmeiser Anacapri, September 2015 Outline Motivation Nonlinear conservation laws with


  1. Travelling waves for a nonlocal KdV-Burgers equation Sabine Hittmeir University of Vienna joint work with: Franz Achleitner, Carlota Cuesta, Christian Schmeiser Anacapri, September 2015

  2. Outline Motivation Nonlinear conservation laws with nonlocal diffusion Travelling waves for the fractional KdV-Burgers equation

  3. Motivation The inviscid Burgers equation ∂ t u + ∂ x u 2 = 0 (1) has shock solutions u ( x , t ) = φ ( x − ct ) = φ ( ξ ) of the form � φ − ξ < 0 φ ( ξ ) = φ + ξ > 0

  4. Motivation The inviscid Burgers equation ∂ t u + ∂ x u 2 = 0 (1) has shock solutions u ( x , t ) = φ ( x − ct ) = φ ( ξ ) of the form � φ − ξ < 0 φ ( ξ ) = φ + ξ > 0 For { φ − , φ + , c } the Rankine-Hugoniot condition (RHC) has to hold − c ( φ + − φ − ) + φ 2 + − φ 2 − = 0 , i.e. c = φ + + φ −

  5. Motivation The inviscid Burgers equation ∂ t u + ∂ x u 2 = 0 (1) has shock solutions u ( x , t ) = φ ( x − ct ) = φ ( ξ ) of the form � φ − ξ < 0 φ ( ξ ) = φ + ξ > 0 For { φ − , φ + , c } the Rankine-Hugoniot condition (RHC) has to hold − c ( φ + − φ − ) + φ 2 + − φ 2 − = 0 , i.e. c = φ + + φ − Both cases φ − > φ + and φ − < φ + provide solutions to (1). How to obtain uniqueness ?

  6. Travelling waves for the viscous Burgers equation ∂ t u + ∂ x u 2 = ∂ 2 x u , The travelling wave equation for u ( t , x ) = φ ( ξ ) with ξ = x − ct reads h ( φ ( ξ )) := − c ( φ ( ξ ) − φ − ) + φ 2 ( ξ ) − φ 2 − = φ ′ ( ξ ) The RHC is equivalent to h ( φ + ) = h ( φ − ) = 0.

  7. Travelling waves for the viscous Burgers equation ∂ t u + ∂ x u 2 = ∂ 2 x u , The travelling wave equation for u ( t , x ) = φ ( ξ ) with ξ = x − ct reads h ( φ ( ξ )) := − c ( φ ( ξ ) − φ − ) + φ 2 ( ξ ) − φ 2 − = φ ′ ( ξ ) The RHC is equivalent to h ( φ + ) = h ( φ − ) = 0.

  8. Travelling waves for the viscous Burgers equation ∂ t u + ∂ x u 2 = ∂ 2 x u , The travelling wave equation for u ( t , x ) = φ ( ξ ) with ξ = x − ct reads h ( φ ( ξ )) := − c ( φ ( ξ ) − φ − ) + φ 2 ( ξ ) − φ 2 − = φ ′ ( ξ ) The RHC is equivalent to h ( φ + ) = h ( φ − ) = 0. h � Φ � Φ � Ξ � Φ Φ � Φ � Ξ We obtain the entropy condition φ − > φ + .

  9. Travelling waves for the KdV-Burgers equation ∂ t u + ∂ x u 2 = ∂ 2 x u + τ∂ 3 x u , where τ > 0 . The travelling wave equation reads h ( φ ) = φ ′ + τφ ′′ and as before we have the Rankine Hugoniot and entropy condition. For phase plane analysis the system is linearised around φ ± : � φ ′ � � � � φ � 0 1 = 2 φ ± − c ψ ′ − 1 ψ τ τ

  10. Travelling waves for the KdV-Burgers equation ∂ t u + ∂ x u 2 = ∂ 2 x u + τ∂ 3 x u , where τ > 0 . The travelling wave equation reads h ( φ ) = φ ′ + τφ ′′ and as before we have the Rankine Hugoniot and entropy condition. For phase plane analysis the system is linearised around φ ± : � φ ′ � � � � φ � 0 1 = 2 φ ± − c ψ ′ − 1 ψ τ τ

  11. Travelling waves for the KdV-Burgers equation ∂ t u + ∂ x u 2 = ∂ 2 x u + τ∂ 3 x u , where τ > 0 . The travelling wave equation reads h ( φ ) = φ ′ + τφ ′′ and as before we have the Rankine Hugoniot and entropy condition. For phase plane analysis the system is linearised around φ ± : � φ ′ � � � � φ � 0 1 = 2 φ ± − c ψ ′ − 1 ψ τ τ

  12. Eigenvalues for the linearised systems show: φ − : saddle point � stable node for τ ≤ 1 / ( φ − − φ + ) =: τ ∗ φ + : stable spiral for τ > τ ∗ Travelling wave solutions are monotone for τ ≤ τ ∗ oscillatory as ξ → ∞ for τ > τ ∗ for existence proof see Bona, Schonbeck 1985

  13. Eigenvalues for the linearised systems show: φ − : saddle point � stable node for τ ≤ 1 / ( φ − − φ + ) =: τ ∗ φ + : stable spiral for τ > τ ∗ Travelling wave solutions are monotone for τ ≤ τ ∗ oscillatory as ξ → ∞ for τ > τ ∗ for existence proof see Bona, Schonbeck 1985

  14. The fractional KdV-Burgers equation Kluwick, Cox, Exner, Grinschgl (2010) 2d shallow water flow of an incompressible fluid with high Reynolds-number

  15. Interaction equation for the pressure p = p ( t , x ) ∂ t p + ∂ x ( p − p 2 ) = A ∂ x D 1 / 3 p + W ∂ 3 x p where � x 1 ∂ y p ( t , y ) D 1 / 3 p ( t , x ) = ( x − y ) 1 / 3 dy Γ(2 / 3) −∞

  16. Nonlinear conservation laws with nonlocal diffusion ∂ t u + ∂ x u 2 = ∂ x D α u , (2) where � x ∂ y u ( t , y ) 1 D α u = d α ( x − y ) α dy , 0 < α < 1 , d α = Γ(1 − α ) −∞ An alternative representation of ∂ x D α : F ( ∂ x D α u )( k ) = − Λ( k ) � u ( t , k ) where Λ( k ) = ( a α − ib α sgn ( k )) | k | α +1 with a α = sin( απ/ 2) > 0 , b α = cos( απ/ 2) > 0 .

  17. Nonlinear conservation laws with nonlocal diffusion ∂ t u + ∂ x u 2 = ∂ x D α u , (2) where � x ∂ y u ( t , y ) 1 D α u = d α ( x − y ) α dy , 0 < α < 1 , d α = Γ(1 − α ) −∞ An alternative representation of ∂ x D α : F ( ∂ x D α u )( k ) = − Λ( k ) � u ( t , k ) where Λ( k ) = ( a α − ib α sgn ( k )) | k | α +1 with a α = sin( απ/ 2) > 0 , b α = cos( απ/ 2) > 0 .

  18. The Cauchy problem ∂ t u + ∂ x u 2 = ∂ x D α u , u (0 , x ) = u 0 ( x ) (3) The semigroup generated by ∂ x D α is given by the convolution with K ( t , x ) = F − 1 e − Λ( k ) t ( x ) . Mild formulation of (3) � t K ( t − τ, . ) ∗ ∂ x u 2 ( τ, . )( x ) d τ. u ( t , x ) = K ( t , . ) ∗ u 0 ( x ) − 0 Theorem (Feller 1971) : For 0 < α < 1, the kernel K is nonnegative: K ( t , x ) ≥ 0 for all t > 0 , x ∈ R .

  19. The Cauchy problem ∂ t u + ∂ x u 2 = ∂ x D α u , u (0 , x ) = u 0 ( x ) (3) The semigroup generated by ∂ x D α is given by the convolution with K ( t , x ) = F − 1 e − Λ( k ) t ( x ) . Mild formulation of (3) � t K ( t − τ, . ) ∗ ∂ x u 2 ( τ, . )( x ) d τ. u ( t , x ) = K ( t , . ) ∗ u 0 ( x ) − 0 Theorem (Feller 1971) : For 0 < α < 1, the kernel K is nonnegative: K ( t , x ) ≥ 0 for all t > 0 , x ∈ R .

  20. The Cauchy problem (II) Theorem (Droniou, Gallouet, Vovelle 2003) If u 0 ∈ L ∞ , then there exists a unique solution u ∈ L ∞ ((0 , ∞ ) × R ) of (3) satisfying the mild formulation (4) almost everywhere. In particular � u ( t , . ) � ∞ ≤ � u 0 � ∞ , for t > 0 . Moreover, the solution satisfies u ∈ C ∞ ((0 , ∞ ) × R ) .

  21. Travelling wave solutions Introducing ξ = x − ct we obtain the travelling wave problem − c φ ′ + ( φ 2 ) ′ = ( D α φ ) ′ , φ ( ±∞ ) = φ ± , , Integrating the equation from −∞ gives � ξ φ ′ ( y ) h ( φ ) = D α φ = d α ( ξ − y ) α dy (4) −∞ where as above h ( φ ) := − c ( φ − φ − ) + φ 2 − φ 2 − and we have the Rankine-Hugoniot and entropy condition.

  22. Travelling wave solutions Introducing ξ = x − ct we obtain the travelling wave problem − c φ ′ + ( φ 2 ) ′ = ( D α φ ) ′ , φ ( ±∞ ) = φ ± , , Integrating the equation from −∞ gives � ξ φ ′ ( y ) h ( φ ) = D α φ = d α ( ξ − y ) α dy (4) −∞ where as above h ( φ ) := − c ( φ − φ − ) + φ 2 − φ 2 − and we have the Rankine-Hugoniot and entropy condition.

  23. Travelling wave solutions (II) The equation is of Abel’s type. A well known transformation leads to � ξ h ( φ ( y )) φ − φ − = I α ( h ( φ )) := d 1 − α ( ξ − y ) 1 − α dy . (5) −∞ Equivalence holds if φ ∈ C 1 b ( R ) is monotone. The linearizations h ′ ( φ − ) v = D α v , v = h ′ ( φ − ) I α v , have solutions v ( ξ ) = be λξ , b ∈ R , where λ = h ′ ( φ − ) 1 /α . Indeed these are the only solutions: � e λξ � N ( D α − h ′ ( u − )) = span

  24. Travelling wave solutions (II) The equation is of Abel’s type. A well known transformation leads to � ξ h ( φ ( y )) φ − φ − = I α ( h ( φ )) := d 1 − α ( ξ − y ) 1 − α dy . (5) −∞ Equivalence holds if φ ∈ C 1 b ( R ) is monotone. The linearizations h ′ ( φ − ) v = D α v , v = h ′ ( φ − ) I α v , have solutions v ( ξ ) = be λξ , b ∈ R , where λ = h ′ ( φ − ) 1 /α . Indeed these are the only solutions: � e λξ � N ( D α − h ′ ( u − )) = span

  25. Travelling wave solutions - Local existence Lemma There exists a unique solution φ satisfying φ − φ − ∈ H 2 (( −∞ , ξ ε ]) with φ ( ξ ε ) = φ − − ε and ξ ε = log ε/λ . Idea of the proof: Introduce the perturbation ¯ φ ( ξ ) = φ ( ξ ) − φ − + e λξ and use fixed point argument involving Fourier transform. �

  26. Travelling wave solutions - Local existence Lemma There exists a unique solution φ satisfying φ − φ − ∈ H 2 (( −∞ , ξ ε ]) with φ ( ξ ε ) = φ − − ε and ξ ε = log ε/λ . Idea of the proof: Introduce the perturbation ¯ φ ( ξ ) = φ ( ξ ) − φ − + e λξ and use fixed point argument involving Fourier transform. �

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend