the viscous burgers equation on the sierpinski gasket
play

The viscous Burgers Equation on the Sierpinski gasket Melissa - PowerPoint PPT Presentation

The viscous Burgers Equation on the Sierpinski gasket Melissa Meinert Bielefeld University 6th Cornell Conference on Analysis, Probability and Mathematical Physics on Fractals Cornell University June 16, 2017 Burgers Equation (Burgers 48)


  1. The viscous Burgers Equation on the Sierpinski gasket Melissa Meinert Bielefeld University 6th Cornell Conference on Analysis, Probability and Mathematical Physics on Fractals Cornell University June 16, 2017

  2. Burgers Equation (Burgers ’48) Viscous Burgers Equation (BE): ∂ u ∂ t + ( u · ∇ ) u = ν ∆ u , ν > 0 � �� � convection (BE) describes laminar flow in fluid dynamics. Aim: 1. Formulation on SG 2. Existence of solutions For related results (existence, uniqueness and regularity of the solution for (BE)) we refer to Liu and Qian [LQ].

  3. Starting point Consider the Cauchy problem for the Heat Equation (HE): � w t ( x , t ) = ν ∆ w ( x , t ) , t > 0 w ( x , 0) = w 0 ( x ) with inf x ∈ SG w 0 ( x ) > c 0 > 0, w 0 ∈ C ( SG ). Idea: Use knowledge about (HE) and Cole Hopf Transformation [Col51, Hop50] u ( x , t ) := − 2 ν ( w ( x , t )) x w ( x , t ) to proof existence of solutions!

  4. Setup ◮ X = SG Sierpinski gasket ◮ µ finite Borel measure s.t. µ ( U ) > 0 ∀ U ⊂ SG open, U � = ∅ ◮ ( E , F ) standard resistence form ◮ ∆ µ Laplacian, defined by � E ( u , v ) = − v ∆ µ ud µ for all v ∈ F vanishing on the boundary See Kusuoka [Kus89], Kigami [Kig89, Kig93, Kig01] and Strichartz [Str06].

  5. Remark resistance form + SG compact in resistance ⇒ F ⊂ C ( SG ) only contains bounded functions F algebra , see [BH91, Cor. I.3.3.2], and it holds 1 1 1 2 ≤ � f � ∞ E ( g ) 2 + � g � ∞ E ( f ) E ( fg ) ∀ f , g ∈ F 2 Following [HRT13], see also [IRT12], we use the framework of 1-forms and derivations introduced by Cipriani and Sauvageot [CS03]. �� � F ⊗ F := f i ⊗ g i finite linear combination, f i , g i ∈ F i

  6. Definition ([CS03]) On F ⊗ F let � a ⊗ b , c ⊗ d � H = 1 2 ( E ( a , cdb ) + E ( abd , c ) − E ( bd , ac )) and � · � H the associated semi-norm. The space H is obtained by taking the quotient by the normzero subspace and then the completion in � · � H . a ( b ⊗ c ) = ( ab ) ⊗ c − a ⊗ ( bc ) ( b ⊗ c ) d = b ⊗ cd a , b , c , d ∈ F

  7. Theorem [IRT12, Thm. 5.6] If H is the Hilbert module of a resistance form on a finitely ramified cell structure, then � ∞ n =0 H n is dense in H , with the subspaces     � H n = h w ⊗ ✶ K w  ,  w ∈ W n where the sum is over all n-cells, ✶ K w is the indicator of the n-cell K w , and h w is a n-harmonic function modulo additive constants. Further, if P is the projection from H onto the closure of the image of the derivation ∂ , then   ∞   � � h w ⊗ ✶ K w = f ⊗ ✶ , where f is n-harmonic   n =0 w ∈ W n is dense in P H .

  8. Definition (abstract derivation) A derivation operator ∂ : F → H can be defined by setting ∂ f := f ⊗ ✶ , f ∈ F . It obeys the Leibniz property ∂ ( ab ) = ( ∂ a ) b + a ( ∂ b ) . and is a bounded linear operator satisfying � ∂ f � 2 H = E ( f ) , f ∈ F . Remark The operator ∂ : F → H can be extended to a closed linear operator ∂ µ : L 2 ( SG , µ ) → H with domain dense in F . For f ∈ F and F ∈ C 1 ( ❘ ) the chain rule is also satisfied ∂ F ( f ) = F ′ ( f ) ∂ f .

  9. In our case: � 5 � m � � ( f ( p ) − f ( q )) 2 E ( f ) = lim 3 m →∞ q ∼ m p p ∈ V m with domain F � g ∂ f � 2 H = � f ⊗ g � 2 H � 5 � m � � g ( p ) + g ( q ) � 2 � ( f ( p ) − f ( q )) 2 = lim 3 2 m →∞ q ∼ m p p ∈ V m

  10. Definition (divergence) µ : H → L 2 ( SG , µ ) is defined as -adjoint operator The divergence ∂ ∗ to ∂ µ , equipped with the domain � � D ( ∂ ∗ v ∈ H : ∃ u ∈ L 2 ( SG , µ ) : � u , φ � L 2 ( SG ,µ ) = −� v , φ � H ∀ φ ∈ F µ ) := . For v ∈ D ( ∂ ∗ µ ) set ∂ ∗ µ v := u . Remark For f ∈ D (∆ µ ) the following is true: ∂ µ f ∈ D ( ∂ ∗ ∆ µ f = ∂ ∗ µ ) and µ ∂ µ f . We will consider f ∈ D (∆ µ ) such that ∆ µ f ∈ C ( SG ) ⊂ L 2 ( SG , µ ) (1)

  11. Definition We denote with � � D H→ C ( SG ) ( ∂ ∗ v ∈ D ( ∂ ∗ µ ) : ∂ ∗ µ ) := µ v ∈ C ( SG ) the space of test vector fields. Further, for u ∈ H , v ∈ D H→ C ( SG ) ( ∂ ∗ µ ) we define � � ∂ µ ∂ ∗ ( v ) := − ( ∂ ∗ µ u )( ∂ ∗ µ u µ v ) , ∂ µ � u , u � H := −� ( ∂ ∗ µ v ) u , u � H . For f as in (1), we have ∂ f ∈ D H→ C ( SG ) ( ∂ ∗ µ ).

  12. Existence of weak solution Definition Let u 0 ∈ H . We say that a function u : [0 , ∞ ) → H with initial condition u 0 is a weak solution of the abstract Burgers Equation , if the function is differentiable on (0 , ∞ ) and obeys for all v ∈ D H→ C b ( ∂ ∗ µ ) � ∆ µ u ( v ) − ∂ µ � u ( t ) , u ( t ) � H ( v ) = � u t ( t ) , v � H , t > 0 (2) lim t → 0 � u ( t ) − u 0 , v � H = 0 .

  13. Existence of weak solution Definition Let u 0 ∈ H . We say that a function u : [0 , ∞ ) → H with initial condition u 0 is a weak solution of the abstract Burgers Equation , if the function is differentiable on (0 , ∞ ) and obeys for all v ∈ D H→ C b ( ∂ ∗ µ ) � ∆ µ u ( v ) − ∂ µ � u ( t ) , u ( t ) � H ( v ) = � u t ( t ) , v � H , t > 0 (2) lim t → 0 � u ( t ) − u 0 , v � H = 0 . Theorem Let w 0 ∈ C b a positively function with w 0 ( p ) ≥ c 0 , p ∈ SG, for a fixed constant c 0 > 0 .Then the function u : [0 , ∞ ) → H , u ( t ) := − ∂ µ (log w ( t )) , with u 0 = − ∂ µ log w 0 t > 0 , is a weak solution of the initial problem (2) .

  14. References I [BH91] Nicolas Bouleau and Francis Hirsch. Dirichlet forms and analysis on Wiener space , volume 14 of De Gruyter studies in mathematics ; 14 . de Gruyter, Berlin [u.a.], 1991. [Col51] Julian D Cole. On a quasi-linear parabolic equation occurring in aerodynamics. Quarterly of applied mathematics , 9(3):225–236, 1951. [CS03] Fabio Cipriani and Jean-Luc Sauvageot. Derivations as square roots of dirichlet forms. JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 201, 1, 78 , 2003. [Hop50] Eberhard Hopf. The partial differential equation u sub t + uu sub x = mu sub xx. DTIC AND NTIS , 1950. [HRT13] Michael Hinz, Michael Rockner, and Alexander Teplyaev. Vector analysis for dirichlet forms and quasilinear pde and spde on metric measure spaces. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2013, 123, 12, 4373 , 2013. [IRT12] Marius Ionescu, Luke G. Rogers, and Alexander Teplyaev. Derivations and dirichlet forms on fractals. JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 263, 8, 2141 , 2012.

  15. References II [Kig89] Jun Kigami. A harmonic calculus on the sierpinski spaces. Japan Journal of Applied Mathematics , 6(2):259–290, 1989. [Kig93] Jun Kigami. Harmonic calculus on p.c.f. self-similar sets. Transactions of the American Mathematical Society , 335(2):721–755, 1993. [Kig01] Jun Kigami. Analysis on fractals , volume 143 of Cambridge tracts in mathematics ; 143 . Cambridge Univ. Press, Cambridge, 2001. [Kus89] Shigeo Kusuoka. Dirichlet forms on fractals and products of random matrices. Kyoto University. Research Institute for Mathematical Sciences. Publications, 1989, 25, 4, 659 , 1989. [LQ] Xuan Liu and Zhongmin Qian. Brownian motion on the sierpinski gasket and related stochastic differential equations. Submitted, arXiv:1612.01297v2. [Str06] Robert S. Strichartz. Differential equations on fractals . Princeton Univ. Press, Princeton [u.a.], 2006.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend