studying the asymptotic structure of solutions of
play

Studying the asymptotic structure of solutions of hydrodynamical - PowerPoint PPT Presentation

CIRM Luminy, September 28 October 2, 2009 Studying the asymptotic structure of solutions of hydrodynamical equations W. Pauls Max Planck Institute for Dynamics and Self-Organization, G ottingen, Germany Models One-dimensional


  1. CIRM Luminy, September 28 – October 2, 2009 Studying the asymptotic structure of solutions of hydrodynamical equations W. Pauls Max Planck Institute for Dynamics and Self-Organization, G¨ ottingen, Germany Models • One-dimensional inviscid Burgers equation • Two-dimensional incompressible Euler equation • One-dimensional Burgers equation with hyperviscosity/exponential dissipation W. Pauls and U. Frisch, J. Stat. Phys. 127 (2007) 1095–1119 W. Pauls, submitted to Physica D (2009) A. Gilbert and W. Pauls, submitted to Nonlinearity (2009) C. Bardos, U. Frisch, W. Pauls, S. S. Ray and E. S. Titi, Communications in Mathematical Physics (2009) in press 1

  2. Motivations • Properties of hydrodynamical PDEs – Integrability of equations ∗ Burgers equation with normal ( α = 1 ) and hyperdissipation ( α > 1 ) ∂ t u + u ∂ x u = − ν α ( − ∂ 2 x ) α u – Well-posedness ∗ Three-dimensional Euler equation ∂ t u + u · ∇ u = −∇ p, ∇ · u = 0 • Analytic properties of solutions – Existence of real or complex singularities – Type of singularities ∗ Navier–Stokes equation with different kinds of dissipation ∂ t u + u · ∇ u = −∇ p − µ D u , ∇ · u = 0 2

  3. How to determine asymptotics in practice • It is difficult to obtain asymptotic expansions by theory • Numerical approach – Solutions computed with high precision – Methods: integral transforms, series expansions – Numerical determination of the asymptotics 3

  4. Asymptotic interpolation/extrapolation: 1D • Given a function G ( r ) with assumed leading-order expansion ( r → ∞ ) G ( r ) ≃ Cr − α e − δr on a regular 1D grid r 0 , 2 r 0 , ..., Nr 0 G n = G ( nr 0 ) , n = 1 , 2 , ..., N can we determine C , α and δ numerically with high accuracy? What about subleading terms? • Naive method: least square fit • Improvement: take second ratio (Shelley, Caflisch, Pauls–Matsumoto–Frisch–Bec) � − α � R n ≃ G n G n − 2 1 = 1 − G 2 ( n − 1) 2 n − 1 Ignore subleading corrections ln R n α = − ln(1 − 1 / ( n − 1) 2 ) • Is there a more systematic approach? 4

  5. Joris van der Hoeven’s asymptotic extrapolation J. van der Hoeven, On asymptotic extrapolation, J. Symbolic Computation 44 (2009) • Interpolate the sequence G n in the “most asymptotic” region n = L, ..., N • Transformations: 1 I Inverse : G n − → G n G n R Ratio : G n − → G n − 1 → G n G n − 2 SR Second ratio : G n − G 2 n − 1 D Difference : G n − → G n − G n − 1 • Going down (assuming G n > 0 ): – Test 1: if G n < 1 apply I – Test 2: Does G n grow faster than n 5 / 2 ? ∗ Yes: if the growth is exponential apply SR , otherwise R ∗ No: apply D – Continue untill obtaining data which are easy to interpolate and clean enough • Going up: invert the transformations I , R , SR and D 5

  6. Implementing asymptotic extrapolation for the Burgers equation with single-mode initial condition • Inviscid Burgers equation ∂ t u + u ( ∂ x u ) = 0 , u (0 , x ) = u 0 ( x ) = − (1 / 2) sin x – Fourier–Lagrangian representation (Platzman, Fournier–Frisch) � 2 π 1 � e ikx ˆ e − ik ( a + tu 0 ( a )) da u ( t, x ) = u k ( t ) , u k ( t ) = − ˆ 2 iπkt 0 k = ± 1 , ± 2 ,... 1 – Explicit solution ˆ u k ( t ) = ikt J k ( kt/ 2) in terms of the Bessel function J k of order k gives via asymptotic (Debye) expansion 1 √   γ n ( 1 − ( t/ 2) 2 ) t − √ ∞ u k ( t ) ∼ 1 1 k − 3 2 e − k (arccosh 2 � 1 − ( t/ 2) 2 )  , ˆ  1 + k n it � � 1 − ( t/ 2) 2 2 π n =1 where γ n are known polynomials (see e.g. Abramowitz–Stegun) • Testing asymptotic extrapolation: Fourier coefficients calculated numerically with high precision (80 digits) at t = 1 and high resolution | k | ≤ 1000 . 6

  7. 4e-06 1.00016 (2) G k (1) G k 3e-06 1.00012 2e-06 1.00008 1e-06 1.00004 0 200 400 600 800 1000 200 400 600 800 1000 4e+08 1e+06 (3) (4) G k G k 8e+05 3e+08 6e+05 2e+08 4e+05 1e+08 2e+05 0 0 200 400 600 800 1000 200 400 600 800 1000 2000 (5) G k (6) - 2 G k 1e-04 1500 1e-06 1000 1e-08 500 1e-10 200 400 600 800 1000 200 400 600 800 1000 → k 3 → 3 k 2 → 1 + α → 2 α → 3 k → 3 − D SR I D D D Ck − α e − δk − − − − − − k 2 k 3 2 α 2 α α α 7

  8. Burgers equation: comparing numerical and theoretical results • The extrapolation procedure can be continued to improve accuracy on α , δ and to determine more subdominant terms – Transformations applied: SR, -D, I, D, D, D, D, I, D, D, D, D, D α δ C 1 . 49999999993 0 . 4509324931404 0 . 4286913791 6 stages 1 . 49999999999999995 0 . 450932493140378061868 0 . 4286913790524959 13 stages 3 / 2 0 . 450932493140378061861 0 . 42869137905249585643 Theor. value γ 1 γ 2 γ 3 − 0 . 17641252 0 . 17295 − 0 . 401 6 stages − 0 . 17641258225238 0 . 172968106990 − 0 . 406446182 13 stages − 0 . 176412582252385 0 . 1729681069958 − 0 . 4064461802 Theor. value γ 4 γ 5 γ 6 1 . 384160933 − 6 . 192505762 34 . 5269751 13 stages 1 . 3841609326 − 6 . 192505761856 34 . 5269752864 Theor. value 8

  9. Nonuniversal nature of complex singularities of the Euler equation • Euler equation in 2D ∂ t ∇ 2 Ψ − J (Ψ , ∇ 2 Ψ) = 0 , • Short-time asymptotic r´ egime: time-independent , one initial condition is enough F ( p ) e − i p · z + ˆ Ψ 0 ( z 1 , z 2 ) = ˆ F ( q ) e − i q · z ⇒ ˆ F ( p ) = 1 , ˆ • Translation invariance = F ( q ) = 1 . • Parameters: ratio of moduli of the basic vectors η = | q | / | p | and the angle φ between p and q • Vorticity diverges near the singularities ( s is the distance to the singular set) ω ∼ s − β , • Exponent β depends on φ (but not on η ) and is thus nonuniversal ! • In particular, β ( φ ) → 1 when φ → 0 and β ( φ ) → 1 / 2 when φ → π . 9

  10. Case φ → 0 : precise determination of the nature of singularities • Numerically determined asymptotic expansion ( k = | k | (cos θ, sin θ ) , | k | → ∞ ) of the stream function in the Fourier space � 1 � �� 1 + b 1 ( θ ) + a 2 ( θ ) ln k G ( k ) ≃ C ( θ ) k − 5 2 e − δ ( θ ) k + O k 2 k 2 k 5e-08 Discrepancy 4.5e-08 4e-08 3.5e-08 3e-08 2.5e-08 2e-08 1.5e-08 1e-08 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 θ 10

  11. 1D Burgers equation with exponentially growing dissipation • Burgers equation in the Fourier space u ( k, t ) + ik � u ( k − p, t ) = − e | k | ˆ ∂ t ˆ u ( p, t )ˆ ˆ u ( k, t ) . 2 p ∈ Z • A dominant balance argument suggests for | k | → ∞ 1 u ( k, t ) ∼ e − ln 2 | k | ln | k | ˆ • Numerical solution – Consider complex-valued initial conditions such that ˆ u 0 ( k ) = 0 for k ≤ 0 and k > K – Observation: all Fourier coefficients can be calculated by a finite number of operations � t ds e − ( t − s ) e k k − 1 u ( k, t ) = e − te k u 0 ( k ) − ik � ˆ u ( p, s )ˆ ˆ u ( k − p, s ) 2 0 p =1 3 e π √ 1 2 k/ 3 – Number of operations grows with k as √ 4 k 11

  12. 1D Burgers equation with exponentially growing dissipation cont’d • Identifying the decay rate: asymptotic extrapolation – Consider the array ˆ u ( k, t ) = g 0 ( k ) for fixed t – Transformations: → − C 1 → − k → − 1 Log D D I D ? e − Ck ln k − → − Ck ln k − → − C ln k − − − = − ln 2 k C C 0.025 0.02 0.015 0.01 Discr (k) 0.005 0 -0.005 -0.01 -0.015 8 10 12 14 16 18 20 22 24 k 12

  13. A simplified model for the 1D Burgers equation • For the simple initial condition u 0 ( x ) = iAe − ix the solution becomes u ( k, t ) = iA k g ( k, t ) ˆ • Coefficients are calculated recursively – The first coefficients are e − 2 e 1 t e − e 2 t g (1 , t ) = e − e 1 t , g (2 , t ) = e 2 − 2 e 1 − e 2 − 2 e 1 – Generally � e ω i � � � g ( k, t ) = h k ( ω ) exp − t i ω ∈ P ( k ) where ∗ P ( k ) are all integer partitions of k ∗ ω = { ω 1 , ..., ω i , ... } is an integer partition of k ∗ h k ( ω ) is a numerical coefficient • For t → ∞ terms with ω i = 1 dominate, so that g ( k, t ) ≃ f ( k ) exp( − tke 1 ) 13

  14. A simplified model for the 1D Burgers equation cont’d • The coefficients f ( k ) are obtained from the recursion relation k − 1 f ( k ) = k 1 � f ( l ) f ( k − l ) , f (1) = 1 e k − ke 1 2 l =1 • Asymptotic extrapolation does not work: use dominant balance and fitting instead � 2 π 1 ln 2 k ln k exp � �� k − 3 1 ˜ 2 e δk e − 2 √ f ( k ) ≃ δk sin ln 2 ln k + φ 3 2 π ln 2 -1.3575 Rate of exponential decay -1.35755 -1.3576 -1.35765 -1.3577 -1.35775 -1.3578 -1.35785 -1.3579 100 1000 10000 k 14

  15. Conclusions • For solutions with “well-behaved” Fourier coefficients the asymptotic extrapolation method can be used successfully • Examples: – Riemann equation (inviscid Burgers equation) – Two-dimensional Euler equation for a special initial condition • If the solutions are not “well-behaved” this method does not work • Examples: – Hyperviscous Burgers equation – Burgers equation with exponentially growing dissipation 15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend