distributed motion coordination of robotic networks
play

Distributed motion coordination of robotic networks Lecture 4 - PowerPoint PPT Presentation

Distributed motion coordination of robotic networks Lecture 4 deployment Jorge Cort es Applied Mathematics and Statistics Baskin School of Engineering University of California at Santa Cruz http://www.ams.ucsc.edu/jcortes Summer


  1. Distributed motion coordination of robotic networks Lecture 4 – deployment Jorge Cort´ es Applied Mathematics and Statistics Baskin School of Engineering University of California at Santa Cruz http://www.ams.ucsc.edu/˜jcortes Summer School on Geometry Mechanics and Control Centro Internacional de Encuentros Matem´ aticos Castro Urdiales, June 25-29, 2007 ,

  2. Roadmap Lecture 1: Introduction, examples, and preliminary notions Lecture 2: Models for cooperative robotic networks Lecture 3: Rendezvous Lecture 4: Deployment Lecture 5: Agreement ,

  3. Today 1 Deployment – Basic motion coordination capability 2 Non-deterministic continuous-time dynamical systems – nonsmooth stability analysis 3 Robustness – against agents’ arrivals and departures ,

  4. Outline 1 Deployment Expected-value deployment Area deployment Expected-value deployment with limited-range interactions 2 Deployment: basic behaviors Nonsmooth stability analysis Multi-center disk-covering and sphere-packing 3 Conclusions ,

  5. Deployment Objective: optimal task allocation and space partitioning optimal placement and tuning of sensors Constraints: algorithms amenable to implementation in a network adaptive versus static distributed versus centralized formal validation versus heuristics increasingly important w/ complexity of network, task, environment, constraints truly implementable on experimental testbeds asynchronous, delay, limited bandwidth, limited energy, interference ,

  6. Coverage optimization DESIGN of performance metrics 1 how to cover a region with n minimum-radius overlapping disks? 2 how to design a minimum-distorsion (fixed-rate) vector quantizer? (Lloyd ’57) 3 where to place mailboxes in a city / cache servers on the internet? ANALYSIS of cooperative distributed behaviors 4 how do animals share territory? what if every fish in a swarm goes toward center of own dominance region? Barlow, Hexagonal territories, Animal Behavior , 1974 5 what if each vehicle goes to center of mass of own Voronoi cell? 6 what if each vehicle moves away from closest vehicle? ,

  7. Top-down: expected-value deployment Objective: Given sensors/nodes/robots/sites ( p 1 , . . . , p n ) moving in environment Q achieve optimal coverage defined according to ,

  8. Top-down: expected-value deployment Objective: Given sensors/nodes/robots/sites ( p 1 , . . . , p n ) moving in environment Q achieve optimal coverage defined according to Scenario 1 —expected value performance measure given distribution density function φ � � q − p i � 2 � minimize H C ( p 1 , . . . , p n ) = E φ min i ,

  9. Scenario 1: coverage algorithm Name: Coverage behavior Goal: distributed optimal agent deployment (i) own Voronoi cell computation Requires: Definition (ii) centroid computation At each communication round, each agent: 1: acquire neighbors’ positions 2: compute own dominance region Computation 3: follow gradient – move towards centroid Caveat: convergence only to local minimum of H C ,

  10. Simulation initial configuration gradient descent final configuration ,

  11. Scenario 1: technical approach 1 Alternative formulation ( f : R + �→ R + , differentiable, non-decreasing) � � � n � E φ min f ( � q − p i � ) = f ( � q − p i � ) φ ( q ) dq i V i ( P ) i =1 � n � ≤ f ( � q − p i � ) φ ( q ) dq W i i =1 ,

  12. Scenario 1: technical approach 1 Alternative formulation ( f : R + �→ R + , differentiable, non-decreasing) � � � n � E φ min f ( � q − p i � ) = f ( � q − p i � ) φ ( q ) dq i V i ( P ) i =1 � n � ≤ f ( � q − p i � ) φ ( q ) dq W i i =1 2 Compute decentralized gradient � ∂ H C ∂ ( P ) = f ( � q − p i � ) φ ( q ) dq ∂p i ∂p i V i ( P ) ,

  13. Scenario 1: technical approach 1 Alternative formulation ( f : R + �→ R + , differentiable, non-decreasing) � � � n � E φ min f ( � q − p i � ) = f ( � q − p i � ) φ ( q ) dq i V i ( P ) i =1 � n � ≤ f ( � q − p i � ) φ ( q ) dq W i i =1 2 Compute decentralized gradient � ∂ H C ∂ ( P ) = f ( � q − p i � ) φ ( q ) dq ∂p i ∂p i V i ( P ) � f ( � q − p i � ) � n i ( q ) , ∂q + � φ ( q ) dq ∂p i ∂V i ( P ) ,

  14. Scenario 1: technical approach 1 Alternative formulation ( f : R + �→ R + , differentiable, non-decreasing) � � � n � E φ min f ( � q − p i � ) = f ( � q − p i � ) φ ( q ) dq i V i ( P ) i =1 � n � ≤ f ( � q − p i � ) φ ( q ) dq W i i =1 2 Compute decentralized gradient � ∂ H C ∂ ( P ) = f ( � q − p i � ) φ ( q ) dq ∂p i ∂p i V i ( P ) � f ( � q − p i � ) � n i ( q ) , ∂q + � φ ( q ) dq ∂p i ∂V i ( P ) � � f ( � q − p j � ) � n ji ( q ) , ∂q + � φ ( q ) dq ∂p i V j ( P ) ∩ V i ( P ) j neigh i ,

  15. Scenario 1: technical approach 1 Alternative formulation ( f : R + �→ R + , differentiable, non-decreasing) � � � � n E φ min f ( � q − p i � ) = f ( � q − p i � ) φ ( q ) dq i V i ( P ) i =1 � n � ≤ f ( � q − p i � ) φ ( q ) dq W i i =1 2 Compute decentralized gradient � ∂ H C ∂ ( P ) = f ( � q − p i � ) φ ( q ) dq ∂p i ∂p i V i ( P ) � f ( � q − p i � ) � n i ( q ) , ∂q + � φ ( q ) dq ∂p i ∂V i ( P ) � f ( � q − p i � ) � n i ( q ) , ∂q − � φ ( q ) dq ∂p i ∂V i ( P ) ,

  16. Scenario 1: technical approach 1 Alternative formulation ( f : R + �→ R + , differentiable, non-decreasing) � � � � n E φ min f ( � q − p i � ) = f ( � q − p i � ) φ ( q ) dq i V i ( P ) i =1 � n � ≤ f ( � q − p i � ) φ ( q ) dq W i i =1 2 Compute decentralized gradient � ∂ H C ∂ ( P ) = f ( � q − p i � ) φ ( q ) dq ∂p i ∂p i V i ( P ) ,

  17. Scenario 1: technical approach 1 Alternative formulation ( f : R + �→ R + , differentiable, non-decreasing) � � � � n E φ min f ( � q − p i � ) = f ( � q − p i � ) φ ( q ) dq i V i ( P ) i =1 � n � ≤ f ( � q − p i � ) φ ( q ) dq W i i =1 2 Compute decentralized gradient � ∂ H C ∂ ( P ) = f ( � q − p i � ) φ ( q ) dq = 2 M V i ( P ) ( p i − C V i ( P ) ) ∂p i ∂p i � �� � V i ( P ) for f ( x )= x 2 ,

  18. Scenario 1: technical approach 1 Alternative formulation ( f : R + �→ R + , differentiable, non-decreasing) � � � n � min f ( � q − p i � ) = f ( � q − p i � ) φ ( q ) dq E φ i V i ( P ) i =1 � n � ≤ f ( � q − p i � ) φ ( q ) dq W i i =1 2 Compute decentralized gradient � ∂ H C ∂ ( P ) = f ( � q − p i � ) φ ( q ) dq = 2 M V i ( P ) ( p i − C V i ( P ) ) ∂p i ∂p i � �� � V i ( P ) for f ( x )= x 2 critical points for H are centroidal Voronoi configurations ,

  19. Correctness of dispersion laws Distributed: over Delaunay graph Adaptive: changing environment, agent arrivals and departures Verifiably correct: convergence to centroidal Voronoi configurations via LaSalle Invariance Principle Asynchronous implementation: wake up 1 determine local Voronoi diagram (w/ outdated information) 2 determine centroid of own Voronoi region 3 take a step in that direction go to sleep ,

  20. Top-down: area deployment Objective: Given sensors/nodes/robots/sites ( p 1 , . . . , p n ) moving in environment Q achieve optimal coverage defined according to Scenario 2 —area (with limited-range sensor or communication radius r ) given distribution density function φ � � � area φ ( ∪ n maximize 2 ( p i )) = max 1 B r ( p i ) ( q ) φ ( q ) dq i =1 B r i Q 2 ,

  21. Scenario 2: weighted normal Take density function constant, φ = 1 � n B r ( p ) φ arc( r ) 2 ,

  22. Scenario 2: weighted normal Take density function constant, φ = 1 � n B r ( p ) φ arc( r ) 2 If arc( r ) is described by [ θ − , θ + ] ∋ θ �→ p + r 2 (cos θ, sin θ ) ∈ R 2 � θ + � θ + − θ − �� � θ + + θ − � � θ + + θ − �� r (cos θ, sin θ ) dθ = sin cos , sin 2 2 2 2 θ − ,

  23. Scenario 2: weighted normal Take density function constant, φ = 1 � n B r ( p ) φ arc( r ) 2 If arc( r ) is described by [ θ − , θ + ] ∋ θ �→ p + r 2 (cos θ, sin θ ) ∈ R 2 � θ + � θ + − θ − �� � θ + + θ − � � θ + + θ − �� r (cos θ, sin θ ) dθ = sin cos , sin 2 2 2 2 θ − ,

  24. Scenario 2: area coverage algorithm Name: Coverage behavior distributed optimal agent deployment Goal: (i) own cell computation Requires: (ii) weighted normal computation For all i , agent i synchronously performs: 1: determine own cell V i ∩ B r 2 ( p i ) � 2: determine weighted normal arc( r ) n B r ( p ) φ 2 3: move in the direction of weighted normal Caveat: convergence only to local maximum of area φ ( ∪ n i =1 B r 2 ( p i )) ,

  25. Simulation initial configuration gradient descent final configuration ,

  26. Correctness and complexity of dispersion laws Distributed: over r -limited Delaunay graph Adaptive: changing environment, agent arrivals and departures Convergence: Gradient + LaSalle Invariance Principle Complexity: for d = 1 , first-order agents with r -lim Delaunay graph TC( T ( rǫ ) -deplmnt , CC centroid ) ∈ O ( n 3 log( nǫ − 1 )) ,

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend