discovered single photon cmos imaging
play

discovered single-photon CMOS imaging Stanford University EE - PowerPoint PPT Presentation

How we wanted to revolutionize X-ray radiography, and how we then "accidentally" discovered single-photon CMOS imaging Stanford University EE Computer Systems Colloquium February 23 rd , 2011 EE380 Peter Seitz, Ph.D. Vice


  1. How we wanted to revolutionize X-ray radiography, and how we then "accidentally" discovered single-photon CMOS imaging Stanford University EE Computer Systems Colloquium February 23 rd , 2011 – EE380 Peter Seitz, Ph.D. Vice President Nanomedicine, CSEM SA Adjunct Professor, EPFL Institute of Microengineering

  2. X-Ray Imaging Information Content: Photography and X-Ray Imagery First (black-and-white) Early X-ray photograph: 1826 image: 1896 Photograph X-ray image today today Stanford EE380 | Peter Seitz | Page 1

  3. X-Ray Imaging Absorption Properties of X-Rays in Matter    x α I 0 I I I e 0 x n    i x i α 1 α 2 α 3  I 0 I  I I e i 1 0 x 1 x 2 x 3 α : linear attenuation coefficient (1/cm)    μ : mass attenuation coefficient (cm 2 /g)  ρ : density (g/cm 3 )   n n          w   tot i i      i i 1 i 1 Stanford EE380 | Peter Seitz | Page 2

  4. X-Ray Imaging Photon Energy Dependent X-Ray Absorption Spectra Medical X-rays Source: NIST XCOM Database Stanford EE380 | Peter Seitz | Page 3

  5. X-Ray Imaging Functional Dependence of the Photoelectric Effect Textbooks: Bragg-Pierce Law for the photoelectric absorption of a homogeneous piece of elemental matter as a function of X-ray photon energy E and atomic number Z : b E   a ( Z , E ) Z b  4.0 ; a  -3.0 Stanford EE380 | Peter Seitz | Page 4

  6. End of slide show, click to exit. X-Ray Imaging Absorption Properties of X-Rays Stanford EE380 | Peter Seitz | Page 5

  7. X-Ray Imaging Photoelectric Absorption Revisited … Assume “cross dependence“ b(E) and a(Z) :  E  b ( E ) a ( Z ) ( ) c Z E Z NIST Database : “Tables of X -Ray Mass Attenuation Coefficients and Mass- Energy Absorption Coefficients“ http://www.physics.nist.gov/PhysRefData/XrayMassCoef/cover.html log  Z (E) Absorption due to photo-effect E Stanford EE380 | Peter Seitz | Page 6

  8. X-Ray Imaging Photoelectric Absorption : Monotonous Functions !  E  b ( E ) a ( Z ) ( ) c Z E Z Stanford EE380 | Peter Seitz | Page 7

  9. Color X-Ray Imaging Color X-Ray Imaging ! n  i = 1, 2, … n constituting elements    a ( Z ) b ( E ) ( E ) c Z E i i i  i 1 n c     b E ( ) j = 1, 2, … m energy sampling a ( Z ) Z j E i j i i j  i 1     b                 a j x x c Z E i j j i i j , i i j Simple linear problem: Find the elemental composition vector ρ i , given the (tabulated/measured) matrix elements B i,j and the measured attenuation vector data α j Stanford EE380 | Peter Seitz | Page 8

  10. Color X-Ray Imaging Color X-Ray Imaging In Practice n c     b ( E ) j = 1, 2, … m energy sampling a ( Z ) Z j E i j i i j  i 1 18 1. Measure reference absorption Al (550  m) 16 Si (390  m) Ti (46  m) spectra for pure elements (basis) 14 NIST Al NIST Si 12 or use tabulated data NIST Ti 2 /kg) 10 2. Measure absorption spectrum of 8  /  (m 6 unknown sample 4 2 3. Solve for linear combination of 0 0 2 4 6 8 10 12 14 16 18 20 basis spectra which best fit the energy (keV) measured attenuation results Stanford EE380 | Peter Seitz | Page 9

  11. Color X-Ray Imaging Experimental Verification X-ray spectrometer Microfocus X-ray source (Amptek X-123) (Hamamatsu L1010101) Sample Stanford EE380 | Peter Seitz | Page 10

  12. Color X-Ray Imaging Element-Sensitive X-Ray Imaging Demonstrated ! Element-sensitive X-ray Conventional X-ray E = 11.6 … 13.1 keV Stanford EE380 | Peter Seitz | Page 11

  13. Color X-Ray Imaging Color X-Ray Imaging Around the Corner ?   b       a j c Z E i j i i j , Ill-conditioned inversion problem ! Example: cond(B) ~ 200…600 for the combination Al and Si with the limited single energy interval of around 11 – 14 keV Possible way out: Multiple energy intervals for reduced cond(B) Large, expensive, power-hungry, high- resolution X-ray spectrometer Wanted: Affordable Megapixel 2D array of <100 × 100 μ m X-ray pixels with Δ E<50 eV Stanford EE380 | Peter Seitz | Page 12

  14. X-Ray Pixel Fundamental Noise Source: Johnson Noise in Resistor   4 kT R B V σ V : noise voltage; k : Boltzmann„s constant; T : temperature; R : resistance; B : bandwidth Stanford EE380 | Peter Seitz | Page 13

  15. X-Ray Pixel Energy-Selective Single X-Ray-Photon Detector Pixel R r  C C  detector sensing q kTC C sensing noise sensing C load C load 1    4 kT R B ; B C detector V RC C detector Large X-ray pixels (area of several 1000 μ m 2 ) Problem : can have capacitances of pF and more Stanford EE380 | Peter Seitz | Page 14

  16. X-Ray Pixel Lateral Drift-Field Pixels ! K. Hoffmann: “Surface charge transport with an MOS- transmission line“, Solid State Electronics Vol. 20, 177 (1977) Note: Lateral drift-field pixels have recently been adopted by industry (Hamamatsu, Mesa Imaging, Espros Photonics, etc.) Stanford EE380 | Peter Seitz | Page 15

  17. X-Ray Pixel Fundamental Noise Limit : Recharge Resistor ! R r C sensing  q kTC noise sensing C load C detector Note : Johnson (resistor) noise is RC-filtered: Independent of R ! Typical value : C sensing = 50 fF, T = 300 K : q noise = 90 electrons Stanford EE380 | Peter Seitz | Page 16

  18. X-Ray Pixel Energy-Selective Single-Particle (X-Ray) Detection • Integration on (small) capacitance on sensor side • Continuous “reset” on sensor side • Continuous-time high-pass filtering of reset noise • Narrow bandwidth shaping of recharge noise: High R r (G Ω ) implementation difficult when connected as feedback resistor R r sense node C s Stanford EE380 | Peter Seitz | Page 17

  19. X-Ray Pixel Energy-Selective Single-Particle (X-Ray) Detection Parameter Value 150 ns – 1.5 µs detected pulse width 27 µV/e - conversion factor recharge time constant 10 µs high-pass time constant 2 µs pixel area 30 x 20 µm fill factor 56 % Hi-pass filter capacitance 200 fF 13.5 e - Overall noise (r.m.s.) Stanford EE380 | Peter Seitz | Page 18

  20. Low-Noise Sensing Low-Noise Charge Detection : Noise Sources Noise contribution Value 1.6 e - Buffer (first transistor) High-pass filter resistor 3.9 e - 1.4 e - Active low-pass filter Reset resistor ( R r ) 12.7 e - 13.5 e - Overall noise (r.m.s.) • Reduce noise substantially (to less than 5 electrons) by changing from “continuous” (asynchronous) reset to “switched” (synchronous) reset ! • Input stage resembles a CMOS active pixel (APS). Is it possible to employ the same ideas (bandwidth engineering, in-pixel amp, input capacitance reduction, synchronous reset) to ultra-low-noise CMOS image sensing? Stanford EE380 | Peter Seitz | Page 19

  21. Low-Noise Sensing The Holy Grail : Single-Electron/Photon Detection ! Stanford EE380 | Peter Seitz | Page 20

  22. Single electron detection CMOS/APS Image Sensing Conventional CMOS pixel reset transfer V R V sense node V R Reset V select column t line reset reset bias Stanford EE380 | Peter Seitz | Page 21

  23. Single electron detection Noise Sources in CMOS/APS Pixels MOS-FET channel noise reset (input-referred Johnson noise) Reset noise transfer (kTC noise) sense node Solution: Correlated Double select Sampling column (CDS) line  4 kT B   bias C Q S g m Stanford EE380 | Peter Seitz | Page 22

  24. Single electron detection State of the Art: MOS-FET Channel Noise  kT B 4   C Q S g m C S = 10 fF ; T = 300 K ; B = 20 MHz ; α = 1 ; g m = 50 μ S σ Q = 5.1 electrons Stanford EE380 | Peter Seitz | Page 23

  25. Single electron detection The Long Quest for Single-Electron/Photon Detection S G D reset gate output gate out p + p + n summing gate p-well CCD P1 P2 P3 dump gate sensing channel dump drain n-substrate V DD V reset V DD reset V diff select out Stanford EE380 | Peter Seitz | Page 24

  26. Single electron detection Novel CMOS/APS Pixel With In-Pixel Gain • In-pixel amplification for reduced bandwidth and reduced impact of downstream circuit noise  very low readout noise transfer Amplifying pixel sense node (common-source connected p-MOS amplifier pixel) select_n column reset_n line q  CF A pixel v C R l sense   v kT A C n , thermal v column Stanford EE380 | Peter Seitz | Page 25

  27. Single electron detection Gain Pixel : Reset and Amplifying State Stanford EE380 | Peter Seitz | Page 26

  28. Single electron detection Gain Pixel : Column-Level Bandwidth Engineering Stanford EE380 | Peter Seitz | Page 27

  29. Single electron detection Single Electron/Photon Detection With CMOS Imagers ! Parameter Value 11x11 μ m pixel pitch 11 µm CMOS pixel with 50% fill fill factor 50% factor transistor count 4 sense node capacitance 5.3 fF Sample voltage gain (linear) 9.9 picture of 300 µV/e - pixel conversion factor (lin.) 256x256 4 ke - linear range imager. Average: 29 ke - full well capacity 6 photo- 0.86 e - rms readout noise (60 fps, 300K) electrons dynamic range (t exp = 17ms) 90.4 dB per pixel Stanford EE380 | Peter Seitz | Page 28

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend